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Vivian Siahaan is a highly motivated individual with a
passion for continuous learning and exploring new areas. Born
and raised in Hinalang Bagasan, Balige, situated on the
picturesque banks of Lake Toba, she completed her high

school education at SMAN 1 Balige. Vivian's journey into the world of
programming began with a deep dive into various languages such as
Java, Android, JavaScript, CSS, C++, Python, R, Visual Basic, Visual
C#, MATLAB, Mathematica, PHP, JSP, MySQL, SQL Server, Oracle,
Access, and more. Starting from scratch, Vivian diligently studied
programming, focusing on mastering the fundamental syntax and
logic. She honed her skills by creating practical GUI applications,
gradually building her expertise. One particular area of interest for
Vivian is animation and game development, where she aspires to make
significant contributions. Alongside her programming and
mathematical pursuits, she also finds joy in indulging in novels,
nurturing her love for literature. Vivian Siahaan's passion for
programming and her extensive knowledge are reflected in the
numerous ebooks she has authored. Her works, published by Sparta



Publisher, cover a wide range of topics, including "Data Structure with
Java," "Java Programming: Cookbook," "C++ Programming:
Cookbook," "C Programming For High Schools/Vocational Schools
and Students," "Java Programming for SMA/SMK," "Java Tutorial:
GUI, Graphics and Animation," "Visual Basic Programming: From A
to Z," "Java Programming for Animation and Games," "C#
Programming for SMA/SMK and Students," "MATLAB For Students
and Researchers," "Graphics in JavaScript: Quick Learning Series,"
"JavaScript Image Processing Methods: From A to Z," "Java GUI
Case Study: AWT & Swing," "Basic CSS and JavaScript,"
"PHP/MySQL Programming: Cookbook," "Visual Basic: Cookbook,"
"C++ Programming for High Schools/Vocational Schools and
Students," "Concepts and Practices of C++," "PHP/MySQL For
Students," "C# Programming: From A to Z," "Visual Basic for
SMA/SMK and Students," and "C# .NET and SQL Server for High
School/Vocational School and Students." Furthermore, at the ANDI
Yogyakarta publisher, Vivian Siahaan has contributed to several
notable books, including "Python Programming Theory and Practice,"
"Python GUI Programming," "Python GUI and Database," "Build
From Zero School Database Management System In Python/MySQL,"
"Database Management System in Python/MySQL," "Python/MySQL
For Management Systems of Criminal Track Record Database,"
"Java/MySQL For Management Systems of Criminal Track Records
Database," "Database and Cryptography Using Java/MySQL," and
"Build From Zero School Database Management System With
Java/MySQL." Vivian's diverse range of expertise in programming
languages, combined with her passion for exploring new horizons,
makes her a dynamic and versatile individual in the field of
technology. Her dedication to learning, coupled with her strong
analytical and problem-solving skills, positions her as a valuable asset
in any programming endeavor. Vivian Siahaan's contributions to the
world of programming and literature continue to inspire and empower
aspiring programmers and readers alike.
 

 



 
Rismon Hasiholan Sianipar, born in Pematang Siantar in 1994, is a distinguished
researcher and expert in the field of electrical engineering. After completing his
education at SMAN 3 Pematang Siantar, Rismon ventured to the city of Jogjakarta
to pursue his academic journey. He obtained his Bachelor of Engineering (S.T) and
Master of Engineering (M.T) degrees in Electrical Engineering from Gadjah Mada

University in 1998 and 2001, respectively, under the guidance of esteemed professors, Dr.
Adhi Soesanto and Dr. Thomas Sri Widodo. During his studies, Rismon focused on
researching non-stationary signals and their energy analysis using time-frequency maps. He
explored the dynamic nature of signal energy distribution on time-frequency maps and
developed innovative techniques using discrete wavelet transformations to design non-linear
filters for data pattern analysis. His research showcased the application of these techniques in
various fields. In recognition of his academic prowess, Rismon was awarded the prestigious
Monbukagakusho scholarship by the Japanese Government in 2003. He went on to pursue his
Master of Engineering (M.Eng) and Doctor of Engineering (Dr.Eng) degrees at Yamaguchi
University, supervised by Prof. Dr. Hidetoshi Miike. Rismon's master's and doctoral theses
revolved around combining the SR-FHN (Stochastic Resonance Fitzhugh-Nagumo) filter
strength with the cryptosystem ECC (elliptic curve cryptography) 4096-bit. This innovative
approach effectively suppressed noise in digital images and videos while ensuring their
authenticity. Rismon's research findings have been published in renowned international
scientific journals, and his patents have been officially registered in Japan. Notably, one of his
patents, with registration number 2008-009549, gained recognition. He actively collaborates
with several universities and research institutions in Japan, specializing in cryptography,
cryptanalysis, and digital forensics, particularly in the areas of audio, image, and video
analysis. With a passion for knowledge sharing, Rismon has authored numerous national and
international scientific articles and authored several national books. He has also actively
participated in workshops related to cryptography, cryptanalysis, digital watermarking, and
digital forensics. During these workshops, Rismon has assisted Prof. Hidetoshi Miike in
developing applications related to digital image and video processing, steganography,
cryptography, watermarking, and more, which serve as valuable training materials. Rismon's
field of interest encompasses multimedia security, signal processing, digital image and video
analysis, cryptography, digital communication, digital forensics, and data compression. He
continues to advance his research by developing applications using programming languages
such as Python, MATLAB, C++, C, VB.NET, C#.NET, R, and Java. These applications serve
both research and commercial purposes, further contributing to the advancement of signal and
image analysis. Rismon Hasiholan Sianipar is a dedicated researcher and expert in the field of
electrical engineering, particularly in the areas of signal processing, cryptography, and digital
forensics. His academic achievements, patented inventions, and extensive publications
demonstrate his commitment to advancing knowledge in these fields. Rismon's contributions
to academia and his collaborations with prestigious institutions in Japan have solidified his
position as a respected figure in the scientific community. Through his ongoing research and
development of innovative applications, Rismon continues to make significant contributions to
the field of electrical engineering.
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In this project, we embarked on a comprehensive journey through the
world of machine learning and model evaluation. Our primary goal
was to develop a Tkinter GUI and assess various machine learning
models on a given dataset to identify the best-performing one. This
process is essential in solving real-world problems, as it helps us select
the most suitable algorithm for a specific task. By crafting this Tkinter-
powered GUI, we provided an accessible and user-friendly interface
for users engaging with machine learning models. It simplified
intricate processes, allowing users to load data, select models, initiate
training, and visualize results without necessitating code expertise or
command-line operations. This GUI introduced a higher degree of
usability and accessibility to the machine learning workflow,
accommodating users with diverse levels of technical proficiency.
 



We began by loading and preprocessing the dataset, a fundamental
step in any machine learning project. Proper data preprocessing
involves tasks such as handling missing values, encoding categorical
features, and scaling numerical attributes. These operations ensure that
the data is in a format suitable for training and testing machine
learning models.
 
Once our data was ready, we moved on to the model selection phase.
We evaluated multiple machine learning algorithms, each with its
strengths and weaknesses. The models we explored included Logistic
Regression, Random Forest, K-Nearest Neighbors (KNN), Decision
Trees, Gradient Boosting, Extreme Gradient Boosting (XGBoost),
Multi-Layer Perceptron (MLP), and Support Vector Classifier (SVC).
 
For each model, we employed a systematic approach to find the best
hyperparameters using grid search with cross-validation. This
technique allowed us to explore different combinations of
hyperparameters and select the configuration that yielded the highest
accuracy on the training data. These hyperparameters included settings
like the number of estimators, learning rate, and kernel function,
depending on the specific model.
 
After obtaining the best hyperparameters for each model, we trained
them on our preprocessed dataset. This training process involved using
the training data to teach the model to make predictions on new,
unseen examples. Once trained, the models were ready for evaluation.
 
We assessed the performance of each model using a set of well-
established evaluation metrics. These metrics included accuracy,
precision, recall, and F1-score. Accuracy measured the overall
correctness of predictions, while precision quantified the proportion of
true positive predictions out of all positive predictions. Recall, on the
other hand, represented the proportion of true positive predictions out
of all actual positives, highlighting a model's ability to identify
positive cases. The F1-score combined precision and recall into a



single metric, helping us gauge the overall balance between these two
aspects.
 
To visualize the model's performance, we created key graphical
representations. These included confusion matrices, which showed the
number of true positive, true negative, false positive, and false
negative predictions, aiding in understanding the model's classification
results. Additionally, we generated Receiver Operating Characteristic
(ROC) curves and area under the curve (AUC) scores, which depicted
a model's ability to distinguish between classes. High AUC values
indicated excellent model performance.
 
Furthermore, we constructed true values versus predicted values
diagrams to provide insights into how well our models aligned with
the actual data distribution. Learning curves were also generated to
observe a model's performance as a function of training data size,
helping us assess whether the model was overfitting or underfitting.
 
Lastly, we presented the results in a clear and organized manner,
saving them to Excel files for easy reference. This allowed us to
compare the performance of different models and make an informed
choice about which one to select for our specific task.
 
In summary, this project was a comprehensive exploration of the
machine learning model development and evaluation process. We
prepared the data, selected and fine-tuned various models, assessed
their performance using multiple metrics and visualizations, and
ultimately arrived at a well-informed decision about the most suitable
model for our dataset. This approach serves as a valuable blueprint for
tackling real-world machine learning challenges effectively.
 
You can download the dataset from:
https://viviansiahaan.blogspot.com/2023/09/tkinter-data-science-and-
machine.html.
 

https://viviansiahaan.blogspot.com/2023/09/tkinter-data-science-and-machine.html
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FEATURES DISTRIBUTION
AND DATA VISUALIZATION

 
 
 
 
Main Class
Open a new python file and save it as main_class.py. Then, import two
libraries as follows:
 
#main_class.py
import tkinter as tk
from tkinter import *
 
These two lines of code import the tkinter library in Python and make its
classes and functions accessible for use in your script. Let's break down
these lines:

1. import tkinter as tk:
This line imports the entire tkinter library and assigns it the alias "tk."
Using an alias is a common practice to make code shorter and more



readable, especially when you need to access various classes and
functions from the imported library.

2. from tkinter import *:
This line imports all the classes and functions from the tkinter library
into your script's namespace. The asterisk * is a wildcard that
represents all the elements in the tkinter library. It allows you to use
tkinter classes and functions directly without prefixing them with
"tk."

Together, these two lines provide access to the tkinter library, which is used
for creating graphical user interfaces (GUI) in Python applications. With
tkinter, you can create windows, buttons, labels, text boxes, and other GUI
elements to build interactive desktop applications.
 
 
Defining Main Class
Create a basic graphical user interface (GUI) application using the tkinter
library. Let's break down the code:

1. Class Definition - Main_Class:

 
class Main_Class:
 def __init__(self, root):
 self.initialize()

 
This defines a class named Main_Class. It has a constructor
(__init__) that takes two arguments: self and root. self is a reference
to the instance of the class being created, and root is expected to be a
tkinter Tk instance (the main application window).
 

2. Initialization Method – initialize():

 def initialize(self):
 self.root = root
        width = 1500
        height = 750
 self.root.geometry(f"{width}x{height}")



 self.root.title("TKINTER AND DATA SCIENCE")
 

The initialize() method is called within the class's
constructor and is responsible for setting up the main
application window.
It assigns the root (main tkinter window) to self.root,
making it accessible within the class.
It sets the width and height of the window to 1500x750
pixels using the geometry method.
It sets the title of the window to "TKINTER AND DATA
SCIENCE" using the title method.

 
3. Main Execution Block:

if __name__ == "__main__":
    root = tk.Tk()
    app = Main_Class(root)
    root.mainloop()

 
This block checks if the script is being run as the main
program (not imported as a module).
It creates a tkinter Tk instance called root, which
represents the main application window.
It then creates an instance of the Main_Class class and
passes the root window as an argument.
Finally, it enters the main event loop using
root.mainloop(), which keeps the application running and
responsive to user interactions.

 
In summary, this code defines a basic tkinter-based GUI application with a
main window. The Main_Class class is used to encapsulate the window
initialization logic. When the script is run, it creates the main window,
configures it, and enters the tkinter event loop, allowing the GUI to be
displayed and interacted with by the user.
 



 
Design_Window Class
Create a new python file named design_window.py. This class is intended
to encapsulate the design and layout of a graphical user interface (GUI)
window using the tkinter library.
 
#design_window.py
import tkinter as tk
from tkinter import ttk
from matplotlib.figure import Figure
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
 
class Design_Window:
 def add_widgets(self, root):
 #Adds button(s)
 self.add_buttons(root)
 
 #Adds canvasses
 self.add_canvas(root)
 
 #Adds labels
 self.add_labels(root)
 
 #Adds listbox widget
 self.add_listboxes(root)
 
 #Adds combobox widget
 self.add_comboboxes(root)
 
In summary, the Design_Window class is to provide a structured way to add
various GUI elements (buttons, canvases, labels, listboxes, and
comboboxes) to a tkinter window. The organization of these elements is
intended to create a user-friendly and functional graphical interface for an
application. However, to fully understand how these widgets are configured
and arranged, you would need to refer to the actual code in
design_window.py.



 
 
Adding Buttons
The code defines a method named add_buttons () within Design_Window
class. It adds two buttons to tkinter GUI window:
 
 def add_buttons(self, root):
 #Adds button
 self.button1 = tk.Button(root, height=2, width=30, text="LOAD
DATASET")
 self.button1.grid(row=0, column=0, padx=5, pady=5, sticky="w")
 
 self.button2 = tk.Button(root, height=2, width=30, text="SPLIT DATA")
 self.button2.grid(row=9, column=0, padx=5, pady=5, sticky="w")
 
Let's break down how these buttons are created and placed within the
window:

1. add_buttons() Method:
This method is responsible for adding buttons to the tkinter
window.
It takes two arguments: self (a reference to the instance of
the Design_Window class) and root (the tkinter main
window to which the buttons will be added).

2. Adding Buttons:
Two buttons are added within this method using tk.Button(root,
height=2, width=30, text="BUTTON_TEXT"), where:

root is the tkinter window where the buttons will be
placed.
height=2 sets the height of the button (in text lines) to 2
units.
width=30 sets the width of the button (in characters) to 30
units.
text="BUTTON_TEXT" sets the text label displayed on
the button to "BUTTON_TEXT."

3. Grid Placement:



The grid() method is used to specify the row and column
placement of each button within the tkinter window.
For self.button1, it is placed in row 0, column 0 of the grid.
padx and pady specify padding (space) around the button,
and sticky indicates how the button sticks to the grid cell
(in this case, "w" means west, or left-aligned).
For self.button2, it is placed in row 9, column 0 with
similar padding and alignment settings.

These buttons, once created and placed, will appear as interactive elements
within the tkinter window. Users can click on them to trigger specific
actions associated with each button. The buttons are labeled "LOAD
DATASET" and "SPLIT DATA," respectively, indicating their functions in
the GUI application.
 
 
Adding Labels
The code defines a method named add_labels() within Design_Window
class, part of the tkinter GUI application. This method is responsible for
adding labels (text labels) to the GUI window.
 
 def add_labels(self, root):
 #Adds labels
 self.label1 = tk.Label(root, text = "CHOOSE PLOT", fg = "red")
 self.label1.grid(row=1, column=0, padx=5, pady=1, sticky="w")
 
 self.label2 = tk.Label(root, text = "CHOOSE CATEGORIZED PLOT", fg
= "blue")
 self.label2.grid(row=3, column=0, padx=5, pady=1, sticky="w")
 
 self.label3 = tk.Label(root, text = "CHOOSE FEATURES", fg = "black")
 self.label3.grid(row=5, column=0, padx=5, pady=1, sticky="w")
 
 self.label4 = tk.Label(root, text = "CHOOSE REGRESSORS", fg =
"green")
 self.label4.grid(row=7, column=0, padx=5, pady=1, sticky="w")



 
 self.label5 = tk.Label(root, text = "CHOOSE MACHINE LEARNING", fg
= "blue")
 self.label5.grid(row=10, column=0, padx=5, pady=1, sticky="w")
 
 self.label6 = tk.Label(root, text = "CHOOSE DEEP LEARNING", fg =
"red")
 self.label6.grid(row=12, column=0, padx=5, pady=1, sticky="w")
 
Let's break down how these labels are created and placed within the tkinter
window:

1. add_labels() Method:
This method is designed to add labels to the tkinter
window.
It takes two arguments: self (a reference to the instance of
the class) and root (the tkinter main window to which the
labels will be added).

2. Adding Labels:
Multiple labels are created within this method using tk.Label(root,
text="LABEL_TEXT", fg="COLOR"), where:

root is the tkinter window where the labels will be placed.
text="LABEL_TEXT" sets the text content of the label to
"LABEL_TEXT."
fg="COLOR" sets the foreground color (text color) of the
label to a specified color (e.g., "red," "blue," "green," or
"black").

3. Grid Placement:
The grid() method is used to specify the row and column
placement of each label within the tkinter window grid.
Each label is placed in a specific row and column, with
optional padding (padx and pady) and alignment (sticky)
settings.

Here's a breakdown of where each label is placed in the grid:
self.label1 is placed in row 1, column 0.
self.label2 is placed in row 3, column 0.



self.label3 is placed in row 5, column 0.
self.label4 is placed in row 7, column 0.
self.label5 is placed in row 10, column 0.
self.label6 is placed in row 12, column 0.

These labels serve as descriptive text elements within the tkinter window,
providing instructions or information to the user about the different options
or features available in the GUI application. The colors are used to
distinguish the labels and make them visually appealing or to categorize
them based on their purpose or function.
 
 
Adding Figures and Canvases
The code defines a method named add_canvas() within Design_Window
class. This method is responsible for adding canvas widgets to a tkinter GUI
window.
 
 def add_canvas(self, root):
 #Menambahkan canvas1 widget pada root untuk menampilkan hasil
 self.figure1 = Figure(figsize=(6.2, 7), dpi=100)
 self.figure1.patch.set_facecolor("lightgray")
 self.canvas1 = FigureCanvasTkAgg(self.figure1, master=root)
 self.canvas1.get_tk_widget().grid(row=0, column=1, columnspan=1,
            rowspan=25, padx=5, pady=5, sticky="n")
 
 #Menambahkan canvas2 widget pada root untuk menampilkan hasil
 self.figure2 = Figure(figsize=(6.2, 7), dpi=100)
 self.figure2.patch.set_facecolor("lightgray")
 self.canvas2 = FigureCanvasTkAgg(self.figure2, master=root)
 self.canvas2.get_tk_widget().grid(row=0, column=2, columnspan=1,
            rowspan=25, padx=5, pady=5, sticky="n")
 
Let's break down the code:

1. add_canvas() Method:
This method is designed to add canvas widgets to the
tkinter window.



It takes two arguments: self (a reference to the instance of
the class) and root (the tkinter main window to which the
canvas widgets will be added).

2. Adding Canvas Widgets:
Two canvas widgets are added within this method. Both are used to
display graphical results.

3. Creating Figure Objects:
For each canvas, a Figure object is created. A Figure in
matplotlib is a top-level container for all plot elements.
The Figure objects are configured with specific
dimensions and a background color. The figsize parameter
sets the width and height of the figure, and dpi (dots per
inch) determines the resolution of the figure.
The patch.set_facecolor method is used to set the
background color of the figure (canvas) to "lightgray."

4. Creating Canvas Widgets:
For each canvas, a FigureCanvasTkAgg object is created.
This object associates a Figure with a tkinter canvas
widget.
self.canvas1 represents the first canvas, and self.canvas2
represents the second canvas.
The FigureCanvasTkAgg constructor takes two arguments:
the Figure object and the master (root) tkinter window.

5. Grid Placement:
The grid method is used to specify the row and column
placement of each canvas widget within the tkinter
window grid.
Both canvas widgets are placed in specific rows and
columns, with optional padding (padx and pady) and
alignment (sticky) settings.
They are placed side by side in different columns of the
same row, suggesting a horizontal layout.

In summary, this method adds two canvas widgets to the tkinter window,
each capable of displaying graphical results. The canvas widgets are
associated with Figure objects, allowing for the rendering of various types



of plots or graphical content within the GUI. The background color of the
canvases is set to "lightgray" for visual clarity.
 
 
Adding ListBox
The code defines a method named add_listboxes() within the
Design_Window class. This method is responsible for adding a listbox
widget to a tkinter GUI window and populating it with a list of items.
 
 def add_listboxes(self, root):
 #Menambahkan list widget
 self.listbox = tk.Listbox(root, selectmode=tk.SINGLE, width=35)
 self.listbox.grid(row=2, column=0, sticky='n', padx=5, pady=1)
 
 # Menyisipkan item ke dalam list widget
        items = ["Marital Status", "Education", "Country",
 "Age Group", "Education with Response 0",
 "Education with Response 1",
 "Country with Response 0", "Country with Response 1",
 "Customer Age", "Income", "Amount of Wines",
 "Education versus Response", "Age Group versus Response",
 "Marital Status versus Response", "Country versus Response",
 "Number of Dependants versus Response",
 "Country versus Customer Age Per Education",
 "Num_TotalPurchases versus Education Per Marital Status"]
 for item in items:
 self.listbox.insert(tk.END, item)
 
 self.listbox.config(height=len(items))
 
Let's break down the code:

1. add_listboxes() Method:
This method is designed to add a listbox widget to a tkinter
window.
It takes two arguments: self (a reference to the instance of
the class) and root (the tkinter main window to which the



listbox will be added).
2. Adding the Listbox Widget:

A listbox widget is created using tk.Listbox(root,
selectmode=tk.SINGLE, width=35), where:

root is the tkinter window where the listbox will be placed.
selectmode=tk.SINGLE specifies that only one item can be
selected at a time.
width=35 sets the width of the listbox widget to 35
characters.

3. Grid Placement:
The grid() method is used to specify the row and column
placement of the listbox widget within the tkinter window
grid.
The listbox is placed in row 2, column 0, with optional
padding (padx and pady) and alignment (sticky) settings.

4. Populating the Listbox:
A list of items (strings) is defined in the items list variable.
These items represent the options that will be displayed in
the listbox.
A loop iterates through each item in the items list and
inserts it into the listbox using the insert method with
tk.END as the index, which adds each item to the end of
the listbox.

5. Configuring the Listbox Height:
The config() method is used to configure the height of the listbox to
match the number of items in the items list. This ensures that all items
are visible within the listbox without the need for scrolling.

In summary, this method adds a listbox widget to the tkinter window,
allowing the user to select one item from a predefined list of options. The
listbox is populated with items, and its height is adjusted to accommodate
all the items without scrolling. This is commonly used in GUIs to provide
users with a selection of choices.
 
 
Adding Comboboxes



The code defines a method named add_comboboxes() within
Design_Window class. This method is responsible for adding combo box
(combobox) widgets to a tkinter GUI window and populating them with
lists of options.
 
 def add_comboboxes(self, root):
 # Create ComboBoxes
 self.combo1 = ttk.Combobox(root, width=32)
 self.combo1["values"] = ["Categorized Income versus Response",
 "Categorized Total Purchase versus Categorized Income",
 "Categorized Recency versus Categorized Total Purchase",
 "Categorized Customer Month versus Categorized Customer Age",
 "Categorized Amount of Gold Products versus Categorized Income",
 "Categorized Amount of Fish Products versus Categorized Total
AmountSpent",
 "Categorized Amount of Meat Products versus Categorized Recency",
 "Distribution of Numerical Columns"]
 self.combo1.grid(row=4, column=0, padx=5, pady=1, sticky="n")
 
 self.combo2 = ttk.Combobox(root, width=32)
 self.combo2["values"] = ["Correlation Matrix", "RF Features Importance",
 "ET Features Importance", "RFE Features Importance"]
 self.combo2.grid(row=6, column=0, padx=5, pady=1, sticky="n")
 
 self.combo3 = ttk.Combobox(root, width=32)
 self.combo3["values"] = ["Linear Regression", "RF Regression",
 "Decision Trees Regression", "KNN Regression",
 "AdaBoost Regression", "Gradient Boosting Regression",
 "XGB Regression", "LGB Regression", "CatBoost Regression",
 "SVR Regression", "Lasso Regression", "Ridge Regression"]
 self.combo3.grid(row=8, column=0, padx=5, pady=1, sticky="n")
 
 self.combo4 = ttk.Combobox(root, width=32)
 self.combo4["values"] = ["Logistic Regression", "Random Forest",
 "Decision Trees", "K-Nearest Neighbors",
 "AdaBoost", "Gradient Boosting",



 "Extreme Gradient Boosting", "Light Gradient Boosting",
 "Multi-Layer Perceptron", "Support Vector Classifier"]
 self.combo4.grid(row=11, column=0, padx=5, pady=1, sticky="n")
 
Let's break down the code:

1. add_comboboxes() Method:
This method is designed to add combo box (combobox)
widgets to a tkinter window.
It takes two arguments: self (a reference to the instance of
the class) and root (the tkinter main window to which the
comboboxes will be added).

2. Adding Combo Boxes:
Multiple comboboxes are created within this method, each
corresponding to a specific set of options.
Each combobox is created using ttk.Combobox(root,
width=32), where:

root is the tkinter window where the combobox will be
placed.
width=32 sets the width of the combobox widget to 32
characters.

3. Populating Combo Boxes:
Each combobox is populated with a list of values (options)
using the "values" attribute.
The options are provided as lists of strings, such as
["Option 1", "Option 2", ...].

4. Grid Placement:
The grid method is used to specify the row and column
placement of each combobox widget within the tkinter
window grid.
Each combobox is placed in a specific row and column,
with optional padding (padx and pady) and alignment
(sticky) settings.

Here's a breakdown of where each combobox is placed in the grid:
self.combo1 is placed in row 4, column 0.
self.combo2 is placed in row 6, column 0.



self.combo3 is placed in row 8, column 0.
self.combo4 is placed in row 11, column 0.

Each combobox provides a dropdown list of options for the user to choose
from. These comboboxes allow users to select various analysis or modeling
options in the GUI application, making it interactive and versatile.
 
 
Adding Widgets onto Root Window
Add statement import in Main_Class, from design_window import
Design_Window. It's used to import the Design_Window class from the
design_window module into your current Python script or program. Let's
break down what this statement does:

from design_window: This part specifies the name of the module
(Python file) that you want to import from. In this case, it's
design_window.
import Design_Window: After specifying the module, you use
the import keyword to indicate that you want to import
something from that module. Here, you're importing the
Design_Window class.

So, after executing this import statement, you will have access to the
Design_Window class in Main_Class script. You can create instances of
this class and use its methods and attributes as needed.
 
Then, create an instance of the Design_Window class and then adding
widgets to it. Put these code inside initialize() method in Main_Class:
 
#Creates necessary objects
self.obj_window = Design_Window()
 
#Places widgets in root
self.obj_window.add_widgets(self.root)  
 
Let's break down what this code does:
 



1. Creating an Instance of Design_Window:
self.obj_window = Design_Window(): This line creates an instance of
the Design_Window class and assigns it to the variable
self.obj_window. This instance represents a GUI window where you
can add widgets.

2. Adding Widgets to the Design_Window:
self.obj_window.add_widgets(self.root): Here, you are
calling the add_widgets() method of the Design_Window
instance (self.obj_window) and passing self.root as an
argument.
The add_widgets method is expected to add various
widgets (buttons, labels, listboxes, comboboxes, etc.) to
the Design_Window instance (self.obj_window).

By creating an instance of Design_Window and adding widgets to it, you
are organizing your GUI components within the Design_Window object.
This can help keep your code modular and make it easier to manage the
layout and functionality of your GUI application.
 
Now, the main_class.py is as follows:
 
#main_class.py
import tkinter as tk
from tkinter import *
from design_window import Design_Window
import os
 
class Main_Class:
 def __init__(self, root):
 self.initialize()
 
 def initialize(self):
 self.root = root
        width = 1500
        height = 750
 self.root.geometry(f"{width}x{height}")



 self.root.title("TKINTER AND DATA SCIENCE")
 
 #Creates necessary objects
 self.obj_window = Design_Window()
 
 #Places widgets in root
 self.obj_window.add_widgets(self.root)  
 
if __name__ == "__main__":
    root = tk.Tk()
    app = Main_Class(root)
    root.mainloop()
 
Run main_class.py. You will see all widgets displayed in root window as
shown in figure 1.
 

Figure 1 All widgets now are placed in root window
 
 
Process_Data Class
Create a new python file named process_data.py.
 
#process_data.py



import os
import numpy as np
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestClassifier,
ExtraTreesClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.feature_selection import RFE
 
Let's break down the key elements of this script:

1. Imports:
os: The os module provides a portable way of using
operating system-dependent functionality. It's often used
for file and directory operations.
numpy as np: This imports the popular numerical library
NumPy with the alias np, which is a common convention.
pandas as pd: This imports the Pandas library with the
alias pd. Pandas is commonly used for data manipulation
and analysis.
LabelEncoder from sklearn.preprocessing: LabelEncoder
is used for encoding categorical labels into numerical
values.
RandomForestClassifier and ExtraTreesClassifier from
sklearn.ensemble: These are machine learning models for
classification tasks using Random Forests and Extra Trees.
LogisticRegression from sklearn.linear_model: This is a
machine learning model for classification using logistic
regression.
RFE (Recursive Feature Elimination) from
sklearn.feature_selection: RFE is used for feature selection
in machine learning.

2. Data Processing and Machine Learning Libraries:
The script focuses on data processing and machine learning tasks, as
it imports libraries for data manipulation (numpy and pandas) and
machine learning (sklearn).

3. Machine Learning Algorithms:



The script imports several machine learning algorithms such as
Random Forest, Extra Trees, and Logistic Regression. These
algorithms are to be used for building and training classification
models.

4. Feature Selection:
The import of RFE (Recursive Feature Elimination) from
sklearn.feature_selection suggests that feature selection techniques
are used to choose relevant features for machine learning models.

5. Data Encoding:
The LabelEncoder from sklearn.preprocessing is often used to encode
categorical data into numerical format, which is required by many
machine learning algorithms.

6. Data Processing and Manipulation:
The numpy and pandas libraries are commonly used for data
processing and manipulation tasks. These libraries provide efficient
data structures and functions for working with large datasets.

 
Reading Dataset
In process_data.py, create a class named Process_Data. Then, defines a new
methode named read_dataset():
 
class Process_Data:
 def read_dataset(self, filename):
 #Reads dataset
        curr_path = os.getcwd()
        path = os.path.join(curr_path, filename)
        df = pd.read_csv(path)
 
 return df
 
The code defines a method named read_dataset() within a Python class
called Process_Data. This method is responsible for reading a dataset from
a CSV file and returning it as a Pandas DataFrame. Let's break down what
this method does:

1. Method Definition:



def read_dataset(self, filename): This defines the read_dataset()
method, which takes two arguments: self (a reference to the instance
of the class) and filename (the name of the CSV file to be read).

2. File Path Construction:
curr_path = os.getcwd(): This line retrieves the current
working directory using the os.getcwd() function and
stores it in the variable curr_path.
path = os.path.join(curr_path, filename): Here, the script
constructs the full path to the CSV file by joining the
curr_path (current working directory) and the provided
filename. This ensures that the file can be located and read.

3. Reading the CSV File:
df = pd.read_csv(path): This line uses the Pandas library's
read_csv() function to read the CSV file located at the path
generated in the previous step. The data from the CSV file
is loaded into a Pandas DataFrame, and that DataFrame is
assigned to the variable df.

4. Returning the DataFrame:
return df: Finally, the method returns the Pandas DataFrame
containing the data from the CSV file.

This read_dataset() method is designed to be part of a data processing
workflow. It allows you to read datasets from CSV files, making it
convenient for further data analysis and manipulation. You can call this
method on an instance of the Process_Data class to read a dataset and work
with its contents.
 
 
Preprocessing Data
The code defines a method named preprocess() within Process_Data class.
This method is responsible for preprocessing a dataset read from a CSV file
named "marketing_data.csv."
 
 def preprocess(self):
        df = self.read_dataset("marketing_data.csv")
 



 #Drops ID column
        df = df.drop("ID", axis = 1)
 
 #Renames column name and corrects data type
        df.rename(columns={' Income ':'Income'},inplace=True)
        df["Dt_Customer"] = pd.to_datetime(df["Dt_Customer"],
format='%m/%d/%y')  
        df["Income"] = df["Income"].str.replace("$","").str.replace(",","")
        df["Income"] = df["Income"].astype(float)
 
 #Checks null values
 print(df.isnull().sum())
 print('Total number of null values: ', df.isnull().sum().sum())
 
 #Imputes Income column with median values
        df['Income'] = df['Income'].fillna(df['Income'].median())
 print(f'Number of Null values in "Income" after Imputation:
{df["Income"].isna().sum()}')
 
 #Transformasi Dt_Customer
        df['Dt_Customer'] = pd.to_datetime(df['Dt_Customer'])
 print(f'After Transformation:\n{df["Dt_Customer"].head()}')
        df['Customer_Age'] = df['Dt_Customer'].dt.year - df['Year_Birth']
 
 #Creates number of children/dependents in home by adding 'Kidhome' and
'Teenhome' features
 #Creates number of Total_Purchases by adding all the purchases features
 #Creates TotalAmount_Spent by adding all the Mnt* features
        df['Dt_Customer_Month'] = df['Dt_Customer'].dt.month
        df['Dt_Customer_Year'] = df['Dt_Customer'].dt.year
        df['Num_Dependants'] = df['Kidhome'] + df['Teenhome']    
 
        purchase_features = [c for c in df.columns if 'Purchase' in str(c)]
 #Removes 'NumDealsPurchases' from the list above
        purchase_features.remove('NumDealsPurchases')
        df['Num_TotalPurchases'] = df[purchase_features].sum(axis = 1)



 
        amt_spent_features = [c for c in df.columns if 'Mnt' in str(c)]
        df['TotalAmount_Spent'] = df[amt_spent_features].sum(axis = 1)  
 
 #Creates a categorical feature using the customer's age by binnning them,
 #to help understanding purchasing behaviour
 print(f'Min. Customer Age: {df["Customer_Age"].min()}')
 print(f'Max. Customer Age: {df["Customer_Age"].max()}')
        df['AgeGroup'] = pd.cut(df['Customer_Age'], bins = [6, 24, 29, 40, 56,
75],
             labels = ['Gen-Z', 'Gen-Y.1', 'Gen-Y.2', 'Gen-X', 'BBoomers'])
 
 return df  
 
Let's break down what this method does step by step:

1. Reading the Dataset:
df = self.read_dataset("marketing_data.csv"): This line calls the
read_dataset() method to read the CSV file into a Pandas DataFrame
named df.

2. Data Cleaning and Transformation:
df = df.drop("ID", axis=1): It drops the "ID" column from
the DataFrame.
df.rename(columns={' Income ':'Income'}, inplace=True):
It renames the " Income " column to "Income" and
removes leading/trailing spaces.
df["Dt_Customer"] = pd.to_datetime(df["Dt_Customer"],
format='%m/%d/%y'): It converts the "Dt_Customer"
column to a datetime format.
df["Income"] =
df["Income"].str.replace("$","").str.replace(",",""): It
removes dollar signs and commas from the "Income"
column and converts it to a float data type.
df['Income'] = df['Income'].fillna(df['Income'].median()): It
fills missing values in the "Income" column with the
median value.



df['Customer_Age'] = df['Dt_Customer'].dt.year -
df['Year_Birth']: It calculates the customer's age based on
the "Dt_Customer" and "Year_Birth" columns.

3. Checking for Missing Values:
print(df.isnull().sum()): It prints the count of missing
values for each column.
print('Total number of null values: ',
df.isnull().sum().sum()): It prints the total number of
missing values in the entire DataFrame.

4. Creating New Features:
The code creates several new features:

Num_Dependants by adding the "Kidhome" and
"Teenhome" features.
Num_TotalPurchases by summing the purchase-related
features.
TotalAmount_Spent by summing the "Mnt*" features.
AgeGroup by binning customer ages into categories based
on predefined bins.

5. Printing Summary Information:
print(f'Min. Customer Age:
{df["Customer_Age"].min()}'): It prints the minimum
customer age.
print(f'Max. Customer Age:
{df["Customer_Age"].max()}'): It prints the maximum
customer age.

6. Returning the Processed DataFrame:
return df: Finally, the method returns the Pandas DataFrame with the
dataset after preprocessing.

This preprocess method is responsible for cleaning, transforming, and
enhancing the dataset, making it ready for further analysis or machine
learning tasks. It demonstrates common data preprocessing steps such as
data type conversion, missing value handling, and feature engineering.
 
 
Categorizing Features



The code defines a method named categorize() within Process_Data class.
This method is responsible for categorizing various numerical features in a
Pandas DataFrame into predefined bins.
 
 def categorize(self, df):
 #Creates a dummy dataframe for visualization
        df_dummy=df.copy()
 
 #Categorizes Income feature
        labels = ['0-20k', '20k-30k', '30k-50k','50k-70k','70k-700k']
        df_dummy['Income'] = pd.cut(df_dummy['Income'],
            [0, 20000, 30000, 50000, 70000, 700000], labels=labels)        
 
 #Categorizes TotalAmount_Spent feature
        labels = ['0-200', '200-500', '500-800','800-1000','1000-3000']
        df_dummy['TotalAmount_Spent'] =
pd.cut(df_dummy['TotalAmount_Spent'],
            [0, 200, 500, 800, 1000, 3000], labels=labels)
 
 #Categorizes Num_TotalPurchases feature
        labels = ['0-5', '5-10', '10-15','15-25','25-35']
        df_dummy['Num_TotalPurchases'] =
pd.cut(df_dummy['Num_TotalPurchases'],
            [0, 5, 10, 15, 25, 35], labels=labels)
 
 #Categorizes Dt_Customer_Year feature
        labels = ['2012', '2013', '2014']
        df_dummy['Dt_Customer_Year'] =
pd.cut(df_dummy['Dt_Customer_Year'],
            [0, 2012, 2013, 2014], labels=labels)
 
 #Categorizes Dt_Customer_Month feature
        labels = ['0-3', '3-6', '6-9','9-12']
        df_dummy['Dt_Customer_Month'] =
pd.cut(df_dummy['Dt_Customer_Month'],
            [0, 3, 6, 9, 12], labels=labels)



 
 #Categorizes Customer_Age feature
        labels = ['0-30', '30-40', '40-50', '40-60','60-120']
        df_dummy['Customer_Age'] = pd.cut(df_dummy['Customer_Age'],
            [0, 30, 40, 50, 60, 120], labels=labels)
 
 #Categorizes MntGoldProds feature
        labels = ['0-30', '30-50', '50-80', '80-100','100-400']
        df_dummy['MntGoldProds'] = pd.cut(df_dummy['MntGoldProds'],
            [0, 30, 50, 80, 100, 400], labels=labels)
 
 #Categorizes MntSweetProducts feature
        labels = ['0-10', '10-20', '20-40', '40-100','100-300']
        df_dummy['MntSweetProducts'] =
pd.cut(df_dummy['MntSweetProducts'],
            [0, 10, 20, 40, 100, 300], labels=labels)
 
 #Categorizes MntFishProducts feature
        labels = ['0-10', '10-20', '20-40', '40-100','100-300']
        df_dummy['MntFishProducts'] =
pd.cut(df_dummy['MntFishProducts'],
            [0, 10, 20, 40, 100, 300], labels=labels)
 
 #Categorizes MntMeatProducts feature
        labels = ['0-50', '50-100', '100-200', '200-500','500-2000']
        df_dummy['MntMeatProducts'] =
pd.cut(df_dummy['MntMeatProducts'],
            [0, 50, 100, 200, 500, 2000], labels=labels)
 
 #Categorizes MntFruits feature
        labels = ['0-10', '10-30', '30-50', '50-100','100-200']
        df_dummy['MntFruits'] = pd.cut(df_dummy['MntFruits'],
            [0, 1, 30, 50, 100, 200], labels=labels)
 
 #Categorizes MntWines feature
        labels = ['0-100', '100-300', '300-500', '500-1000','1000-1500']



        df_dummy['MntWines'] = pd.cut(df_dummy['MntWines'],
            [0, 100, 300, 500, 1000, 1500], labels=labels)
 
 #Categorizes Recency feature
        labels = ['0-10', '10-30', '30-50', '50-80','80-100']
        df_dummy['Recency'] = pd.cut(df_dummy['Recency'],
            [0, 10, 30, 50, 80, 100], labels=labels)
 
 return df_dummy
 
Let's break down what this method does:

1. Method Definition:
def categorize(self, df): This defines the categorize() method, which
takes two arguments: self (a reference to the instance of the class) and
df (a Pandas DataFrame containing the data to be categorized).

2. Creating a Dummy DataFrame:
df_dummy = df.copy(): A copy of the input DataFrame df is made
and stored in df_dummy. This is done to keep the original DataFrame
intact while performing the categorization.

3. Categorizing Features:
The method categorizes various numerical features in the df_dummy
DataFrame using the pd.cut() function. Each feature is binned into
categories based on predefined bins, and the categorized values are
stored back in the df_dummy DataFrame.

4. Feature Categories:
Each feature is categorized into specific bins, and labels are assigned
to the categories. For example, the "Income" feature is categorized
into labels like '0-20k', '20k-30k', and so on.

5. Returning the Categorized DataFrame:
return df_dummy: Finally, the method returns the Pandas DataFrame
df_dummy containing the categorized data.

This categorize method is useful for converting numerical features into
categorical features with meaningful labels. It's often used when you want
to analyze data in groups or perform aggregations based on these



categories. The categorized data can be further used for visualization and
analysis.
 
 
Extracting Categorical and Numerical Features
The code defines a method named extract_cat_num_cols() within
Process_Data class. It is responsible for extracting and categorizing the
columns in a Pandas DataFrame into two lists: categorical columns and
numerical columns.
 
 def extract_cat_num_cols(self, df):
 #Extracts categorical and numerical columns in dummy dataset
        cat_cols = [col for col in df.columns if
            (df[col].dtype == 'object') or (df[col].dtype.name == 'category')]
        num_cols = [col for col in df.columns if
            (df[col].dtype != 'object') and (df[col].dtype.name != 'category')]
 
 return cat_cols, num_cols
 
Let's break down how this method works:

1. Method Definition:
def extract_cat_num_cols(self, df): This is a method definition that
takes two parameters: self, which is a reference to the instance of the
class, and df, which is expected to be a Pandas DataFrame.

2. Extracting Categorical Columns:
cat_cols = [col for col in df.columns if (df[col].dtype == 'object') or
(df[col].dtype.name == 'category')]: This list comprehension iterates
through the columns in the DataFrame df and checks if a column has
either the data type 'object' or the data type 'category'. If a column
matches either of these conditions, it is considered a categorical
column and is added to the cat_cols list.

3. Extracting Numerical Columns:
num_cols = [col for col in df.columns if (df[col].dtype != 'object') and
(df[col].dtype.name != 'category')]: Similarly, this list comprehension
iterates through the columns in the DataFrame df and checks if a
column does not have the data type 'object' and does not have the data



type 'category'. If a column matches these conditions, it is considered
a numerical column and is added to the num_cols list.

4. Returning the Categorized Columns:
return cat_cols, num_cols: Finally, the method returns two lists:
cat_cols, which contains the names of categorical columns, and
num_cols, which contains the names of numerical columns.

This method is useful for quickly identifying and separating columns based
on their data types, which can be helpful for various data preprocessing and
analysis tasks. For example, you may want to apply different encoding
techniques to categorical columns and scaling methods to numerical
columns when working with machine learning models.
 
 
Encoding Categorical Features
In Process_Data class, the encode_categorical_feats() method in the code is
responsible for encoding categorical features in a Pandas DataFrame using
Label Encoding.
 
 def encode_categorical_feats(self, df, cat_cols):
 #Encodes categorical features in original dataset     
 print(f'Features that needs to be Label Encoded: \n{cat_cols}')
 
 for c in cat_cols:
            lbl = LabelEncoder()
            lbl.fit(list(df[c].astype(str).values))
            df[c] = lbl.transform(list(df[c].astype(str).values))
 print('Label Encoding done..')  
 return df  
 
Let's break down how this method works:

1. Method Definition:
def encode_categorical_feats(self, df, cat_cols): This is a method
definition that takes three parameters: self, which is a reference to the
instance of the class, df, which is a Pandas DataFrame, and cat_cols,
which is a list of categorical columns to be encoded.



2. Printing Categorical Features:
print(f'Features that need to be Label Encoded: \n{cat_cols}'): This
line prints the names of the categorical features that are going to be
label-encoded.

3. Label Encoding:
The method then iterates through each categorical column specified in
cat_cols:

for c in cat_cols:: This loop iterates through the names of
the categorical columns.
lbl = LabelEncoder(): A new instance of the LabelEncoder
class is created. The LabelEncoder is a preprocessing
technique that assigns a unique integer to each category in
a categorical feature.
lbl.fit(list(df[c].astype(str).values)): The fit method of the
LabelEncoder is called with the values of the current
categorical column. It converts the column values to
strings (in case they are not already) and fits the encoder to
these values.
df[c] = lbl.transform(list(df[c].astype(str).values)): The
transform method of the LabelEncoder is applied to the
current categorical column, converting its values to their
corresponding integer labels.

4. Printing Confirmation:
print('Label Encoding done..'): This line prints a message confirming
that the label encoding process has been completed.

5. Returning the Encoded DataFrame:
return df: Finally, the method returns the Pandas DataFrame df with
the categorical features label-encoded.

Label encoding is a technique commonly used to convert categorical data
into a numerical format that machine learning algorithms can work with.
Each category is assigned a unique integer label. It is important to note that
label encoding may introduce ordinal relationships between categories,
which may not be appropriate for all categorical features. In some cases,
one-hot encoding or other encoding methods may be preferred, depending
on the nature of the data and the machine learning model being used.



 
 
 
Extracting Input and Output Variables
In Process_Data class, the extract_input_output_vars() method in the code
is responsible for extracting the input variables (features) and the output
variable (target) from a Pandas DataFrame.
 
 def extract_input_output_vars(self, df):
 #Extracts output and input variables
        y = df['Response'].values # Target for the model
        X = df.drop(['Dt_Customer', 'Year_Birth', 'Response'], axis = 1)  
 
 return X, y
 
Let's break down how this method works:

1. Method Definition:
def extract_input_output_vars(self, df): This is a method definition
that takes two parameters: self, which is a reference to the instance of
the class, and df, which is a Pandas DataFrame containing the dataset.

2. Extracting the Output Variable:
y = df['Response'].values: This line extracts the output variable, often
referred to as the target variable, from the DataFrame df. It assumes
that the target variable is named "Response" in the DataFrame. The
.values attribute converts the target column into a NumPy array,
which is commonly used as the target for machine learning models.

3. Extracting the Input Variables:
X = df.drop(['Dt_Customer', 'Year_Birth', 'Response'], axis=1): This
line extracts the input variables (features) from the DataFrame df. It
drops three columns from the DataFrame: "Dt_Customer,"
"Year_Birth," and "Response." These columns are removed from the
input features, leaving the rest of the columns as the input variables.

4. Returning the Extracted Variables:
return X, y: Finally, the method returns two variables:
X: This contains the input variables (features) for the
machine learning model.



y: This contains the output variable (target) that the model
aims to predict.

This method is designed to facilitate the preparation of data for machine
learning tasks. It separates the features (input variables) from the target
variable, making it easier to use the data with various machine learning
algorithms. Typically, in supervised machine learning, X represents the
independent variables, and y represents the dependent variable that the
model will predict.
 
 
Feature Importances Using Random Forest Classifier
In Process_Data class, The feat_importance_rf() method in the code is
responsible for calculating and returning feature importances using a
Random Forest classifier.
 
 def feat_importance_rf(self, X, y):
        names = X.columns
        rf = RandomForestClassifier()
        rf.fit(X, y)
 
        result_rf = pd.DataFrame()
        result_rf['Features'] = X.columns
        result_rf ['Values'] = rf.feature_importances_
        result_rf.sort_values('Values', inplace = True, ascending = False)
 
 return result_rf
 
Let's break down how this method works:

1. Method Definition:
def feat_importance_rf(self, X, y): This is a method definition that
takes three parameters: self, which is a reference to the instance of the
class, X, which is a Pandas DataFrame containing the input features,
and y, which is a NumPy array containing the target variable.

2. Extracting Feature Names:



names = X.columns: This line extracts the names of the input features
(columns) from the DataFrame X and stores them in the names
variable. These feature names will be used for labeling the feature
importances.

3. Random Forest Classifier:
rf = RandomForestClassifier(): An instance of the
RandomForestClassifier is created. The Random Forest classifier is a
machine learning model known for its ability to assess feature
importance by analyzing how much each feature contributes to the
model's predictions.

4. Fitting the Model:
rf.fit(X, y): The Random Forest classifier is fitted to the input features
(X) and the target variable (y). This means the model is trained on the
provided data.

5. Creating a Result DataFrame:
result_rf = pd.DataFrame(): An empty Pandas DataFrame
called result_rf is created to store the feature importances.
result_rf['Features'] = X.columns: A column named
"Features" is created in the result_rf DataFrame, and it is
populated with the names of the input features.
result_rf['Values'] = rf.feature_importances_: Another
column named "Values" is created, and it is populated with
the feature importances calculated by the Random Forest
classifier. These values represent how much each feature
contributes to the model's predictions.

6. Sorting Feature Importances:
result_rf.sort_values('Values', inplace=True, ascending=False): The
result_rf DataFrame is sorted in descending order based on the feature
importances. This means that the most important features will appear
at the top of the DataFrame.

 
7. Returning the Result DataFrame:

return result_rf: Finally, the method returns the result_rf DataFrame,
which contains feature names and their corresponding importances as
calculated by the Random Forest classifier.



This method is useful for identifying which features have the most
influence on the model's predictions, which can be valuable for feature
selection and understanding the importance of various factors in a
predictive model.
 
 
Feature Importances Using Extra Trees Classifier
In Process_Data class, the feat_importance_et() method in the code is
responsible for calculating and returning feature importances using an Extra
Trees classifier. This method can be used to understand the importance of
different features in a dataset when building a machine learning model.
 
 def feat_importance_et(self, X, y):
        model = ExtraTreesClassifier()
        model.fit(X, y)
 
        result_et = pd.DataFrame()
        result_et['Features'] = X.columns
        result_et ['Values'] = model.feature_importances_
        result_et.sort_values('Values', inplace=True, ascending =False)
 
 return result_et  
 
Let's discuss how this method works:

1. Method Definition:
def feat_importance_et(self, X, y): This method is defined to calculate
feature importances using the Extra Trees classifier. It takes three
parameters: self, which refers to the instance of the class, X, which is
a Pandas DataFrame containing the input features, and y, which is a
NumPy array containing the target variable (labels or classes).

2. Creating an Extra Trees Classifier:
model = ExtraTreesClassifier(): An instance of the
ExtraTreesClassifier is created. This classifier is used for feature
selection and classification tasks. It is an ensemble learning method
similar to the Random Forest, but it has some differences in how it
constructs and selects decision trees.



3. Fitting the Model:
model.fit(X, y): The Extra Trees classifier is fitted to the input
features X and the target variable y. This step involves training the
classifier on the provided data to learn patterns and relationships
between features and the target variable.

4. Creating a Result DataFrame:
result_et = pd.DataFrame(): An empty Pandas DataFrame
called result_et is created to store the feature importances.
result_et['Features'] = X.columns: A column named
"Features" is added to the result_et DataFrame, and it
contains the names of the input features.
result_et['Values'] = model.feature_importances_: Another
column named "Values" is added to the result_et
DataFrame, and it contains the feature importances
calculated by the Extra Trees classifier. These importances
represent how much each feature contributes to the model's
predictive performance.

5. Sorting Feature Importances:
result_et.sort_values('Values', inplace=True, ascending=False): The
result_et DataFrame is sorted based on the "Values" column in
descending order. This means that the most important features will
appear at the top of the DataFrame.

6. Returning the Result DataFrame:
return result_et: Finally, the method returns the result_et DataFrame,
which contains the feature names and their corresponding
importances as calculated by the Extra Trees classifier.

The feature importances calculated by this method can be valuable for
feature selection, dimensionality reduction, and gaining insights into which
features are most influential in making predictions with machine learning
models.
 
 
Feature Importances Using Recursive Feature Elimination (RFE)
In Process_Data class, the feat_importance_rfe() method in the code is
responsible for calculating and returning feature rankings using Recursive



Feature Elimination (RFE) with a Logistic Regression model.
 
 def feat_importance_rfe(self, X, y):
        model = LogisticRegression()
 #Creates the RFE model
        rfe = RFE(model)
        rfe = rfe.fit(X, y)
 
        result_lg = pd.DataFrame()
        result_lg['Features'] = X.columns
        result_lg ['Ranking'] = rfe.ranking_
        result_lg.sort_values('Ranking', inplace=True , ascending = False)
 
 return result_lg   
 
Let's break down how this method works:

1. Method Definition:
def feat_importance_rfe(self, X, y): This is a method definition that
takes three parameters: self, which is a reference to the instance of the
class, X, which is a Pandas DataFrame containing the input features,
and y, which is a NumPy array containing the target variable.

2. Creating a Logistic Regression Model:
model = LogisticRegression(): An instance of the LogisticRegression
classifier is created. Logistic Regression is used as the base model for
feature ranking in the RFE process. The RFE technique aims to select
the most important features by iteratively training the model with
different subsets of features.

3. Creating the RFE Model:
rfe = RFE(model): An instance of the Recursive Feature Elimination
(RFE) technique is created, with the LogisticRegression model as its
base estimator. RFE is used to perform feature selection by
recursively removing the least important features.

4. Fitting the RFE Model:
rfe = rfe.fit(X, y): The RFE model is fitted to the input features X and
the target variable y. During this process, RFE iteratively trains the



Logistic Regression model with different subsets of features and
assigns rankings to each feature based on their importance.

5. Creating a Result DataFrame:
result_lg = pd.DataFrame(): An empty Pandas DataFrame
called result_lg is created to store the feature rankings.
result_lg['Features'] = X.columns: A column named
"Features" is added to the result_lg DataFrame, containing
the names of the input features.
result_lg['Ranking'] = rfe.ranking_: Another column
named "Ranking" is added to the result_lg DataFrame,
containing the feature rankings assigned by the RFE
process. Lower rankings indicate more important features.

6. Sorting Feature Rankings:
result_lg.sort_values('Ranking', inplace=True, ascending=False): The
result_lg DataFrame is sorted in descending order based on the
"Ranking" column. This means that the features with lower rankings
(more important) will appear at the top of the DataFrame.

7. Returning the Result DataFrame:
return result_lg: Finally, the method returns the result_lg DataFrame,
which contains feature names and their corresponding rankings based
on the RFE process.

The RFE technique is used for feature selection, and it helps identify the
most important features for a given machine learning task. In this case, the
rankings indicate the relative importance of each feature in making
predictions using a Logistic Regression model.
 
 
 
 
Saving Prediction Result
In Process_Data class, the save_result() method in the code is responsible
for saving the results of a prediction task into a CSV file. This method takes
the actual target values (y_test), predicted values (y_pred), and a file name
(fname) as input and then saves the results into a CSV file.
 



 def save_result(self, y_test, y_pred, fname):
 # Convert y_test and y_pred to pandas Series for easier handling
        y_test_series = pd.Series(y_test)
        y_pred_series = pd.Series(y_pred)
 
 # Calculate y_result_series
        y_result_series = pd.Series(y_pred - y_test == 0)
        y_result_series = y_result_series.map({True: 'True', False: 'False'})
 
 # Create a DataFrame to hold y_test, y_pred, and y_result
        data = pd.DataFrame({'y_test': y_test_series, 'y_pred': y_pred_series,
'result': y_result_series})
 
 # Save the DataFrame to a CSV file
        data.to_csv(fname, index=False)
 
Here's a breakdown of how this method works:

1. Method Definition:
def save_result(self, y_test, y_pred, fname): This is a method
definition that takes four parameters: self, which refers to the instance
of the class, y_test, which is a NumPy array or Pandas Series
containing the actual target values, y_pred, which is a NumPy array
or Pandas Series containing the predicted values, and fname, which is
a string representing the file name for saving the results.

2. Converting to Pandas Series:
y_test_series = pd.Series(y_test): The y_test array is
converted into a Pandas Series called y_test_series. This
conversion makes it easier to manipulate and combine with
other Series.
y_pred_series = pd.Series(y_pred): Similarly, the y_pred
array is converted into a Pandas Series called
y_pred_series.

3. Calculating the Result Series:
y_result_series = pd.Series(y_pred - y_test == 0): This line
calculates a result series called y_result_series. It compares
the predicted values (y_pred) with the actual values



(y_test) element-wise and checks if they are equal. The
result is a Boolean Series where True indicates that the
prediction was correct, and False indicates an incorrect
prediction.
y_result_series = y_result_series.map({True: 'True', False:
'False'}): The Boolean values in y_result_series are
mapped to the strings 'True' and 'False', making it more
human-readable.

4. Creating a DataFrame for Results:
data = pd.DataFrame({'y_test': y_test_series, 'y_pred': y_pred_series,
'result': y_result_series}): A Pandas DataFrame called data is created
to hold three columns: 'y_test' (containing actual target values),
'y_pred' (containing predicted values), and 'result' (containing 'True'
or 'False' based on correctness of predictions). This DataFrame
combines the actual and predicted values along with the result.

5. Saving the DataFrame to CSV:
data.to_csv(fname, index=False): The data DataFrame is saved to a
CSV file with the name specified by the fname parameter. The
index=False argument ensures that the DataFrame index is not saved
in the CSV file.

In summary, this method takes the actual and predicted values, computes
whether each prediction was correct or not, and stores this information
along with the original values in a CSV file for further analysis and
reporting. This can be helpful for evaluating the performance of a machine
learning model and comparing actual vs. predicted outcomes.
 
 
Helper_Plot Class
Create a new python file named helper_plot.py. Then, define a class named
The Helper_Plot as utility class designed for plotting and visualizing data. It
contains various methods and imports necessary libraries for creating
visualizations.
 
#helper_plot.py
from tkinter import *



import seaborn as sns
import numpy as np
from pandastable import Table
from process_data import Process_Data
from sklearn.metrics import confusion_matrix, roc_curve,
accuracy_score
from sklearn.model_selection import learning_curve
 
class Helper_Plot:
 def __init__(self):
 self.obj_data = Process_Data()
 
Let's go through the key aspects of this class:

1. Imports:
from tkinter import *: This import statement is used to
import the necessary modules from the Tkinter library,
which is commonly used for creating graphical user
interfaces (GUIs) in Python.
import seaborn as sns: Seaborn is a data visualization
library built on top of Matplotlib. It is often used to create
visually appealing statistical graphics.
import numpy as np: NumPy is a library for numerical
computations in Python.
from pandastable import Table: PandasTable is a library
that provides a widget for displaying Pandas DataFrames
in a Tkinter GUI.

2. Initialization:
def __init__(self): The class constructor (__init__) initializes the
Helper_Plot object. Inside the constructor, an instance of the
Process_Data class (obj_data) is created. This suggests that the
Helper_Plot class might work in conjunction with data processing
methods from the Process_Data class.

3. Methods:
The Helper_Plot class contains various methods for creating
visualizations, such as plots, tables, and other graphical
representations of data.



4. Integration with Process_Data:
The presence of an instance of the Process_Data class (obj_data)
suggests that this class will work together with the data processing
and preparation methods from the Process_Data class. It's common to
have a separate utility class for plotting and visualization when
working on data analysis and machine learning projects.

Overall, the Helper_Plot class serves as a utility for creating visualizations
and working with data in a graphical form. It's used in conjunction with
other classes and methods to analyze and visualize data for various data
science and machine learning tasks.
 
 
Displaying Table
In Helper_Plot class, the shows_table() method in the code is responsible
for displaying a Pandas DataFrame as a table in a new window created
using Tkinter.
 
 def shows_table(self, root, df, width, height, title):
       frame = Toplevel(root) #new window
 self.table = Table(frame, dataframe=df, showtoolbar=True,
showstatusbar=True)
 
 # Sets dimension of Toplevel
       frame.geometry(f"{width}x{height}")
       frame.title(title)
 self.table.show()
 
Let's break down how this method works:

1. Method Definition:
def shows_table(self, root, df, width, height, title): This is a method
definition that takes five parameters:

self: This refers to the instance of the Helper_Plot class.
root: This is a reference to the Tkinter root window or
parent window where the new window will be created.



df: This is the Pandas DataFrame that you want to display
as a table.
width: This is an integer representing the width of the new
window in pixels.
height: This is an integer representing the height of the
new window in pixels.
title: This is a string representing the title of the new
window.

2. Creating a New Window:
frame = Toplevel(root): This line creates a new Tkinter Toplevel
window (frame) that will be used to display the table.

3. Creating the Table Widget:
self.table = Table(frame, dataframe=df, showtoolbar=True,
showstatusbar=True): This line creates a PandasTable widget
(self.table) within the new Toplevel window (frame). It displays the
DataFrame df as a table. The showtoolbar=True and
showstatusbar=True arguments indicate that the table widget should
include a toolbar and a status bar.

4. Setting the Window Dimensions and Title:
frame.geometry(f"{width}x{height}"): This line sets the
dimensions (width and height) of the new window (frame)
using the values provided in the width and height
parameters.
frame.title(title): This line sets the title of the new window
(frame) using the string provided in the title parameter.

5. Displaying the Table:
self.table.show(): Finally, this line displays the table within the new
window (frame).

In summary, the shows_table() method allows you to pop up a new window
containing a table representation of a Pandas DataFrame. This can be useful
for visualizing and exploring the data interactively within a GUI application
built with Tkinter.
 
 
Modify Main_Class to Show Table of Dataset



The modified Main_Class in the code has been extended to include
functionality related to data preprocessing and visualization using the
Design_Window, Process_Data, and Helper_Plot classes. Let's break down
the modifications and additions:

1. Import Statements:
The code now includes import statements for the os module,
indicating that it may interact with the file system.

2. Object Creation:
Three new objects are created within the initialize() method:

self.obj_data = Process_Data(): An instance of the
Process_Data class is created, indicating that this class will
be used for data processing.
self.obj_plot = Helper_Plot(): An instance of the
Helper_Plot class is created, suggesting that this class will
be used for data visualization and plotting.

 
3. Data Preprocessing and Visualization:

After creating instances of Process_Data and Helper_Plot, the code
performs the following steps:

Reads the dataset using self.obj_data.preprocess().
Categorizes the dataset using
self.obj_data.categorize(self.df).
Extracts input and output variables using
self.obj_data.extract_cat_num_cols(self.df) and
self.obj_data.extract_input_output_vars(self.df_final).
Binds an event to self.obj_window.button1 to display the
dataset as a table when the "LOAD DATASET" button is
clicked.

4. Combo Box State:
Initially, the code sets the state of self.obj_window.combo4 and
self.obj_window.combo5 to 'disabled'. These combo boxes
correspond to some functionality that is initially disabled until data
splitting is done.



Overall, the modified Main_Class integrates data processing and
visualization into the Tkinter-based GUI application. It uses the
Process_Data class for data processing, the Helper_Plot class for
visualization, and the Design_Window class for creating the GUI interface.
The code performs data preprocessing tasks and binds events to interact
with the GUI components. It provides an example of how to create a more
comprehensive data science application using Tkinter and related classes.
 
#main_class.py
import os
import tkinter as tk
from tkinter import *
from design_window import Design_Window
from process_data import Process_Data
 
class Main_Class:
 def __init__(self, root):
 self.initialize()
 
 def initialize(self):
 self.root = root
        width = 1500
        height = 750
 self.root.geometry(f"{width}x{height}")
 self.root.title("TKINTER AND DATA SCIENCE")
 
 #Creates necessary objects
 self.obj_window = Design_Window()
 self.obj_data = Process_Data()
 self.obj_plot = Helper_Plot()
 
 #Places widgets in root
 self.obj_window.add_widgets(self.root)    
 
 #Reads dataset
 self.df = self.obj_data.preprocess()



 
 #Categorize dataset
 self.df_dummy = self.obj_data.categorize(self.df)
 
 #Extracts input and output variables
 self.cat_cols, self.num_cols = self.obj_data.extract_cat_num_cols(self.df)
 self.df_final = self.obj_data.encode_categorical_feats(self.df,
 self.cat_cols)
 self.X, self.y = self.obj_data.extract_input_output_vars(self.df_final)  
 
 #Binds event
 self.binds_event()
 
 #Initially turns off combo4 and combo5 before data splitting is done
 self.obj_window.combo4['state'] = 'disabled'
 self.obj_window.combo5['state'] = 'disabled'
 
 def binds_event(self):
 #Binds button1 to shows_table() function
 #Shows table if user clicks LOAD DATASET
 self.obj_window.button1.config(command =
lambda:self.obj_plot.shows_table(self.root, self.df, 1400, 600, "Dataset"))  
 
if __name__ == "__main__":
    root = tk.Tk()
    app = Main_Class(root)
    root.mainloop()
 



Figure 2 Showing the table of dataset
 
Run main_class.py script, then click on LOAD DATASET button to see the
table of dataset as shown in figure 2
 
 
Plotting Pie Chart and Bar Chart
In Helper_Plot class, the plot_piechart() method defined in the code is
responsible for creating a pie chart and a corresponding bar plot as subplots
within a single Matplotlib figure.
 
 # Defines function to create pie chart and bar plot as subplots   
 def plot_piechart(self, df, var, figure, canvas, title=''):
        figure.clear()
 
 # Pie Chart (left subplot)
        plot1 = figure.add_subplot(2,1,1)        
        label_list = list(df[var].value_counts().index)
        colors = sns.color_palette("deep", len(label_list))  
        _, _, autopcts = plot1.pie(df[var].value_counts(), autopct="%1.1f%%",
colors=colors,
            startangle=30, labels=label_list,



            wedgeprops={"linewidth": 2, "edgecolor": "white"},  # Add white
edge
            shadow=True, textprops={'fontsize': 7})
        plot1.set_title("Distribution of " + var + " variable " + title,
fontsize=10)
 
 # Bar Plot (right subplot)
        plot2 = figure.add_subplot(2,1,2)
        ax = df[var].value_counts().plot(kind="barh", color=colors, alpha=0.8,
ax = plot2)
 for i, j in enumerate(df[var].value_counts().values):
            ax.text(.7, i, j, weight="bold", fontsize=7)
 
        plot2.set_title("Count of " + var + " cases " + title, fontsize=10)
 
        figure.tight_layout()
        canvas.draw()
 
Let's break down how this method works:

1. Method Definition:
def plot_piechart(self, df, var, figure, canvas, title=''): This is a
method definition that takes several parameters:

self: This refers to the instance of the class.
df: This is a Pandas DataFrame containing the data to be
visualized.
var: This is a string representing the variable/column in the
DataFrame that you want to visualize.
figure: This is a Matplotlib Figure object where the
subplots will be created.
canvas: This is a Matplotlib FigureCanvasTkAgg object
that will be used to draw the subplots.
title='': This is an optional string representing a title for the
plots.

2. Clearing the Figure:
figure.clear(): This line clears any previous content in the Matplotlib
figure. It ensures that the new pie chart and bar plot will be drawn on



a blank canvas.
3. Pie Chart (Left Subplot):

plot1 = figure.add_subplot(2,1,1): This line creates the left
subplot for the pie chart within the figure. The add_subplot
function is used to specify the subplot's position in a 2x1
grid (2 rows and 1 column of subplots).
The pie chart is created using Matplotlib's pie function. It
displays the distribution of values in the specified column
(var) of the DataFrame df. Various parameters are set to
customize the pie chart, such as labels, colors, autopct
(percentage labels), and more.
plot1.set_title("Distribution of " + var + " variable " + title,
fontsize=10): This line sets the title for the pie chart
subplot. The title includes the variable name (var) and an
optional title provided as a parameter.

4. Bar Plot (Right Subplot):
plot2 = figure.add_subplot(2,1,2): This line creates the
right subplot for the bar plot within the figure. Similar to
the pie chart, it is positioned in the second row of the 2x1
grid.
The bar plot is created using Matplotlib's barh function. It
displays the count of each unique value in the specified
column (var) of the DataFrame df.
Labels and annotations are added to the bars to display the
counts.
plot2.set_title("Count of " + var + " cases " + title,
fontsize=10): This line sets the title for the bar plot
subplot. The title includes the variable name (var) and an
optional title provided as a parameter.

5. Tight Layout and Drawing:
figure.tight_layout(): This line ensures that the subplots are
arranged neatly within the figure.
canvas.draw(): This line draws the subplots on the canvas,
making them visible in the Matplotlib figure.



In summary, the plot_piechart() method allows you to create a pie chart and
a bar plot as subplots within a Matplotlib figure, providing a visual
representation of the distribution and counts of values in a specified
DataFrame column. The optional title parameter allows you to add a title to
the plots.
 
 
 
 
 
 
Pair of Histogram Plots
In Helper_Plot class, the another_versus_response() method defined in the
code is responsible for creating a pair of histogram plots as subplots within
a single Matplotlib figure. These histograms represent the distribution of a
numerical feature (feat) for two different response classes (0 and 1,
representing "Not Responsive" and "Responsive," respectively).
 
 def another_versus_response(self, df, feat, num_bins, figure, canvas):
        figure.clear()
        plot1 = figure.add_subplot(2,1,1)
 
        colors = sns.color_palette("Set2")
        df[df['Response'] == 0][feat].plot(ax=plot1, kind='hist',
bins=num_bins, edgecolor='black', color=colors[0])
        plot1.set_title('Not Responsive', fontsize=15)
        plot1.set_xlabel(feat, fontsize=10)
        plot1.set_ylabel('Count', fontsize=10)
        data1 = []
 for p in plot1.patches:
            x = p.get_x() + p.get_width() / 2.
            y = p.get_height()
            plot1.annotate(format(y, '.0f'), (x, y), ha='center',
                     va='center', xytext=(0, 10),
                     weight="bold", fontsize=7, textcoords='offset points')
            data1.append([x, y])



 
        plot2 = figure.add_subplot(2,1,2)
        df[df['Response'] == 1][feat].plot(ax=plot2, kind='hist',
bins=num_bins, edgecolor='black', color=colors[1])
        plot2.set_title('Responsive', fontsize=15)
        plot2.set_xlabel(feat, fontsize=10)
        plot2.set_ylabel('Count', fontsize=10)
        data2 = []
 for p in plot2.patches:
            x = p.get_x() + p.get_width() / 2.
            y = p.get_height()
            plot2.annotate(format(y, '.0f'), (x, y), ha='center',
                     va='center', xytext=(0, 10),
                     weight="bold", fontsize=7, textcoords='offset points')
            data2.append([x, y])
 
        figure.tight_layout()
        canvas.draw()
 
Let's break down how this method works:

1. Method Definition:
def another_versus_response(self, df, feat, num_bins, figure, canvas):
This is a method definition that takes several parameters:

self: This refers to the instance of the class.
df: This is a Pandas DataFrame containing the data to be
visualized.
feat: This is a string representing the numerical
feature/column in the DataFrame that you want to
visualize.
num_bins: This is an integer specifying the number of bins
or intervals for the histogram.
figure: This is a Matplotlib Figure object where the
subplots will be created.
canvas: This is a Matplotlib FigureCanvasTkAgg object
that will be used to draw the subplots.



 
2. Clearing the Figure:

figure.clear(): This line clears any previous content in the Matplotlib
figure. It ensures that the new histograms will be drawn on a blank
canvas.

3. Histogram Plots for "Not Responsive" and "Responsive":
plot1 = figure.add_subplot(2,1,1): This line creates the
upper subplot for the histogram representing the "Not
Responsive" class within the figure. The add_subplot
function is used to specify the subplot's position in a 2x1
grid (2 rows and 1 column of subplots).
colors = sns.color_palette("Set2"): This line defines a color
palette (Set2) for the histograms.
df[df['Response'] == 0][feat].plot(ax=plot1, kind='hist',
bins=num_bins, edgecolor='black', color=colors[0]): This
line creates a histogram for the "Not Responsive" class. It
filters the DataFrame to select only rows where Response
is 0 and plots the histogram of the specified feature (feat)
with the specified number of bins (num_bins).
Customization options such as edge color and color are set.
The same steps are repeated to create a histogram for the
"Responsive" class (Response is 1) in the lower subplot
(plot2).

4. Customization:
Titles, x-axis labels, and y-axis labels are set for both
subplots to provide context to the histograms.
Annotations are added to the top of each histogram bar to
display the count of data points in each bin.

5. Tight Layout and Drawing:
figure.tight_layout(): This line ensures that the subplots are
arranged neatly within the figure.
canvas.draw(): This line draws the subplots on the canvas,
making them visible in the Matplotlib figure.

In summary, the another_versus_response() method allows you to create a
pair of histogram plots within a Matplotlib figure. These histograms



visualize the distribution of a specified numerical feature (feat) for two
different response classes (0 and 1). The histograms provide insights into
how the feature's distribution differs between the two classes.
 
 
Plotting Stacked Bar Chart
In Helper_Plot class, the put_label_stacked_bar() and
dist_one_vs_another_plot() methods defined in the code are used to create a
stacked bar chart for visualizing the relationship between two categorical
variables.
 
The purpose of the code is to create a graphical user interface (GUI)
application using Python's Tkinter library for data analysis and visualization
in the context of data science. The application is designed to assist users in
loading, exploring, and analyzing datasets, performing data preprocessing
tasks, and generating various data visualizations.
 
 #Puts label inside stacked bar
 def put_label_stacked_bar(self, ax,fontsize):
 #patches is everything inside of the chart
 for rect in ax.patches:
 # Find where everything is located
            height = rect.get_height()
            width = rect.get_width()
            x = rect.get_x()
            y = rect.get_y()
 
 # The height of the bar is the data value and can be used as the label
            label_text = f'{height:.0f}' 
 
 # ax.text(x, y, text)
            label_x = x + width / 2
            label_y = y + height / 2
 
 # plots only when height is greater than specified value
 if height > 0:



                ax.text(label_x, label_y, label_text, \
                    ha='center', va='center', \
                    weight = "bold",fontsize=fontsize)
 
 #Plots one variable against another variable
 def dist_one_vs_another_plot(self, df, cat1, cat2, figure, canvas, title):
        figure.clear()
        plot1 = figure.add_subplot(1,1,1)
 
        group_by_stat = df.groupby([cat1, cat2]).size()
        colors = sns.color_palette("Set2", len(df[cat1].unique()))
        stacked_data = group_by_stat.unstack()
        group_by_stat.unstack().plot(kind='bar', stacked=True, ax=plot1,
grid=True, color=colors)
        plot1.set_title(title, fontsize=12)
        plot1.set_ylabel('Number of Cases', fontsize=10)
        plot1.set_xlabel(cat1, fontsize=10)
 self.put_label_stacked_bar(plot1,7)
 # Set font for tick labels
        plot1.tick_params(axis='both', which='major', labelsize=8)
        plot1.tick_params(axis='both', which='minor', labelsize=8)    
        plot1.legend(fontsize=8)    
        figure.tight_layout()
        canvas.draw()
 
Let's break down how these methods work:

1. put_label_stacked_bar Method:
This method is responsible for adding labels inside each bar of a
stacked bar chart.

ax: This parameter represents the Axes object (subplot)
where the stacked bar chart is plotted.
fontsize: This parameter specifies the font size for the
labels.

2. Here's how the method works:
It iterates through each bar (rectangle) in the stacked bar
chart.



For each bar, it retrieves information about its position,
height, width, and coordinates.
The height of the bar (data value) is used as the label text.
The label's position (label_x and label_y) is calculated as
the center of the bar.
Labels are placed inside the bars only if the bar's height is
greater than a specified value (ensuring that small bars
don't get cluttered with labels).

3. dist_one_vs_another_plot() Method:
This method creates a stacked bar chart to visualize the distribution of
one categorical variable against another categorical variable. The
chart represents the number of cases for each combination of the two
categorical variables.

df: This parameter is a Pandas DataFrame containing the
data to be visualized.
cat1: This parameter is a string representing the first
categorical variable.
cat2: This parameter is a string representing the second
categorical variable.
figure: This parameter is a Matplotlib Figure object where
the stacked bar chart will be created.
canvas: This parameter is a Matplotlib
FigureCanvasTkAgg object used to draw the chart.
title: This parameter is a string specifying the title of the
chart.

4. Here's how the method works:
It first clears any previous content in the Matplotlib figure.
It creates a single subplot within the figure (plot1) to
display the stacked bar chart.
The data is grouped by the two categorical variables (cat1
and cat2), and the size of each group is calculated.
Colors are defined for each category in cat1.
The data is then unstacked, and a stacked bar chart is
created with bars representing the number of cases for
each combination of cat1 and cat2.



Labels are added inside each bar using the
put_label_stacked_bar method.
The chart is customized with titles, axis labels, legend,
grid, and tick label fonts.
Finally, the chart is drawn on the canvas and ensures that
the subplots are arranged neatly within the figure.



In summary, these methods help you visualize the distribution and
relationships between categorical variables using stacked bar charts, and
they ensure that labels are placed inside the bars for better readability.
 
 
Box Plot Visualization
In Helper_Plot class, the box_plot() method is designed to create a box plot
visualization of the dataset, showing the distribution of a numerical variable
(y) for different categories or groups specified by two categorical variables
(x and hue). This type of plot is useful for visualizing the distribution of a
numerical variable across different categories and identifying any potential
outliers or variations within each category.
 
 def box_plot(self, df, x, y, hue, figure, canvas, title):
        figure.clear()
        plot1 = figure.add_subplot(1,1,1)
 
 #Creates boxplot of Num_TotalPurchases versus Num_Dependants
        sns.boxplot(data = df, x = x, y = y, hue = hue, ax=plot1)
        plot1.set_title(title, fontsize=14)
        plot1.set_xlabel(x, fontsize=10)
        plot1.set_ylabel(y, fontsize=10)
        figure.tight_layout()
        canvas.draw()
 
Here's an explanation of the method's parameters and functionality:

df: The dataset (DataFrame) containing the data to be visualized.
x: The name of the first categorical variable, which determines
the groups or categories along the x-axis of the box plot.
y: The name of the numerical variable whose distribution will be
visualized using the box plot. The distribution of this variable
will be represented using boxes and whiskers.
hue: The name of the second categorical variable (optional). If
specified, it determines the color-coding of the box plot,
allowing you to differentiate between groups within the primary



categories defined by x. This is useful when you want to
visualize a third categorical dimension.
figure: The Matplotlib figure object where the box plot will be
created. The figure object should be cleared before creating the
new box plot to avoid overlapping with previous visualizations.
canvas: The Matplotlib canvas associated with the figure. This
canvas is used to display the updated plot.
title: The title for the box plot, which is displayed above the
visualization.

The main steps and functionality of the box_plot method are as follows:
1. It clears any existing content in the Matplotlib figure to prepare

it for the new box plot.
2. It creates a subplot within the figure using figure.add_subplot(1,

1, 1).
3. It uses Seaborn's sns.boxplot function to generate the box plot.

The box plot displays the distribution of the y variable for each
category defined by x and, if specified, further differentiated by
hue.

4. It sets the title, x-axis label, and y-axis label for the box plot
based on the provided parameters (title, x, and y).

5. Finally, it tightens the layout of the plot within the figure,
ensuring that the plot elements do not overlap, and then updates
the canvas to display the new box plot.

In summary, the box_plot() method allows users to visualize the distribution
of a numerical variable across different categories or groups defined by one
or two categorical variables. The resulting box plot provides insights into
the central tendency, spread, and potential outliers of the data within each
category, making it a valuable tool for exploratory data analysis.
 
 
Distribution of Marital Status
In Helper_Plot class, the choose_plot() method focuses on choosing and
displaying a specific type of plot based on the user's selection (chosen) from
a dropdown or input.



 
 
 def choose_plot(self, df1, df2, chosen, figure1, canvas1, figure2, canvas2):
 print(chosen)
 if chosen == "Marital Status":
 self.plot_piechart(df2, "Marital_Status", figure1, canvas1)
 
Here's an explanation of the method's parameters and functionality:

df1 and df2: These are DataFrames representing different subsets
of the data. It's that df2 is a modified or categorized version of
df1, which may be used for specific types of visualizations.
chosen: This parameter represents the user's choice or selection,
typically from a dropdown or input widget. It determines which
type of plot to generate based on the user's selection.
figure1 and canvas1: These are Matplotlib figure and canvas
objects where the first type of plot will be created and displayed.
figure2 and canvas2: Similar to figure1 and canvas1, these
objects are used for a different type of plot that may be displayed
alongside the first plot.

Here's what this code does:
1. It checks the value of the chosen parameter to determine if it

matches a specific option, in this case, "Marital Status."
2. If the user has selected "Marital Status," it calls the

plot_piechart() method with specific arguments:
df2: This DataFrame contains data related to marital status.
"Marital_Status": This is the name of the variable
(column) within df2 that will be used to create the pie
chart.
figure1 and canvas1: These are the Matplotlib figure and
canvas objects where the pie chart will be displayed.

3. The plot_piechart() method is expected to create and display a
pie chart showing the distribution of marital status based on the
data in df2.



In summary, the choose_plot() method is responsible for determining the
type of plot to display based on the user's selection (chosen). If the user
chooses "Marital Status," it triggers the creation of a pie chart showing the
distribution of marital status using data from df2. This approach allows for
dynamic plot generation based on user input.
 
Then, modify Main_Class class as follows:
 
#main_class.py
import os
import tkinter as tk
from tkinter import *
from design_window import Design_Window
from process_data import Process_Data
from helper_plot import Helper_Plot
 
class Main_Class:
 def __init__(self, root):
 self.initialize()
 
 def initialize(self):
 self.root = root
        width = 1500
        height = 750
 self.root.geometry(f"{width}x{height}")
 self.root.title("TKINTER AND DATA SCIENCE")
 
 #Creates necessary objects
 self.obj_window = Design_Window()
 self.obj_data = Process_Data()
 self.obj_plot = Helper_Plot()
 
 #Places widgets in root
 self.obj_window.add_widgets(self.root)    
 
 #Reads dataset



 self.df = self.obj_data.preprocess()
 
 #Categorize dataset
 self.df_dummy = self.obj_data.categorize(self.df)
 
 #Extracts input and output variables
 self.cat_cols, self.num_cols = self.obj_data.extract_cat_num_cols(self.df)
 self.df_final = self.obj_data.encode_categorical_feats(self.df, self.cat_cols)
 self.X, self.y = self.obj_data.extract_input_output_vars(self.df_final)  
 
 #Binds event
 self.binds_event()
 
 #Initially turns off combo4 and combo5 before data splitting is done
 self.obj_window.combo4['state'] = 'disabled'
 self.obj_window.combo5['state'] = 'disabled'
 
 def binds_event(self):
 #Binds button1 to shows_table() function
 #Shows table if user clicks LOAD DATASET
 self.obj_window.button1.config(command =
lambda:self.obj_plot.shows_table(self.root, self.df, 1400, 600, "Dataset"))  
 
 #Binds listbox to a function
 self.obj_window.listbox.bind("<<ListboxSelect>>",
self.choose_list_widget)
 
 def choose_list_widget(self, event):
        chosen =
self.obj_window.listbox.get(self.obj_window.listbox.curselection())
 print(chosen)
 self.obj_plot.choose_plot(self.df, self.df_dummy, chosen,
 self.obj_window.figure1, self.obj_window.canvas1,
 self.obj_window.figure2, self.obj_window.canvas2)
 
if __name__ == "__main__":



    root = tk.Tk()
    app = Main_Class(root)
    root.mainloop()
 
 
This line of code is binding an event handler function to the
<<ListboxSelect>> event of a Listbox widget.
 
 #Binds listbox to a function
 self.obj_window.listbox.bind("<<ListboxSelect>>",
self.choose_list_widget)
 
Here's what it does:

1. self.obj_window.listbox: This refers to a Listbox widget created
in the obj_window object (an instance of the Design_Window
class).

2. .bind("<<ListboxSelect>>", self.choose_list_widget): This is the
binding statement.

3. "<<ListboxSelect>>": This is the event to which the function is
being bound. It's the event that gets triggered when an item in
the Listbox is selected.

4. self.choose_list_widget: This is the function (event handler) that
will be executed when the <<ListboxSelect>> event occurs. In
this case, it's choose_list_widget, which is a method of the
Main_Class class.

When a user selects an item in the Listbox by clicking on it, the
<<ListboxSelect>> event is triggered. When this event occurs, the
choose_list_widget method (self.choose_list_widget) will be executed. This
allows you to define specific actions or behavior that should occur when the
user selects an item from the Listbox.
 
Then, in Main_Class, add a new method named choose_list_widget(). It is
an event handler that is executed when the <<ListboxSelect>> event occurs,
which happens when a user selects an item in the Listbox widget.
 



 def choose_list_widget(self, event):
        chosen =
self.obj_window.listbox.get(self.obj_window.listbox.curselection())
 print(chosen)
 self.obj_plot.choose_plot(self.df, self.df_dummy, chosen,
 self.obj_window.figure1, self.obj_window.canvas1,
 self.obj_window.figure2, self.obj_window.canvas2)
 
Here's a breakdown of what this function does:

1. chosen =
self.obj_window.listbox.get(self.obj_window.listbox.curselection
()): This line retrieves the currently selected item(s) from the
Listbox widget (self.obj_window.listbox) using the
curselection() method. It assigns the selected item(s) to the
chosen variable. Since Listboxes can support multiple selections
(if configured as such), chosen will contain a list of selected
items.

2. print(chosen): This line simply prints the selected item(s) to the
console. This is for debugging or informational purposes and
helps you see what the user has selected.

3. self.obj_plot.choose_plot(...): This line calls the choose_plot()
method of the self.obj_plot object (an instance of the
Helper_Plot class). It passes several arguments to this method:

4. self.df: This is the main DataFrame containing your data.
5. self.df_dummy: This is another DataFrame, a modified version

of the main DataFrame, used for visualization purposes.
6. chosen: This is the item selected in the Listbox, representing the

user's choice.
7. self.obj_window.figure1 and self.obj_window.canvas1: These

are objects used for displaying a plot in the user interface.
8. self.obj_window.figure2 and self.obj_window.canvas2: These

are additional objects used for displaying plots.

 
Based on the selected item (chosen), the choose_plot() method generates
and displays a specific type of data visualization using the provided data



and UI elements.
 
In summary, the choose_list_widget() function serves as a bridge between
the user's selection in the Listbox and the generation of specific data
visualizations in your application. It allows the user to interactively choose
what type of visualization they want to see.
 
Then, run main_class.py. Select Marital Status in list widget to see the
distribution of marital status in the dataset as shown in figure 3.
 

Figure 3 The distribution of marital status
 
 
Distribution of Education
Add this code to the end of choose_plot() method in Helper_Plot class.
When the user selects "Education" in the Listbox (chosen == "Education"),
the self.obj_plot.choose_plot() method is called with specific arguments to
generate and display a pie chart related to the "Education" feature.
 
 elif chosen == "Education":
 self.plot_piechart(df2, "Education", figure2, canvas2)
 



The choose_plot() method, based on the value of chosen (which is
"Education" in this case), will generate a specific type of data visualization
(in this case, a pie chart) using the provided data (from self.df and
self.df_dummy) and display it within the UI elements
(self.obj_window.figure2 and self.obj_window.canvas2).
 
Then, run main_class.py. Select Education in list widget to see the
distribution of education in the dataset as shown in figure 4.
 

Figure 4 The distribution of education
 
 
Distribution of Country
Add this code to the end of choose_plot() method in Helper_Plot class:
 
 elif chosen == "Country":
 self.plot_piechart(df2, "Country", figure1, canvas1)  
 
When the user selects "Country" from the Listbox, a specific data
visualization is generated and displayed within user interface. This
functionality is achieved through the choose_list_widget() function, which
is bound to the Listbox's selection event. When "Country" is selected, it
triggers the choose_plot() method of the self.obj_plot object, an instance of



the Helper_Plot class. This method takes several arguments, including the
main data DataFrame (self.df), a modified DataFrame for visualization
(self.df_dummy), and the specific selection made by the user ("Country").
Additionally, it uses UI elements (self.obj_window.figure1 and
self.obj_window.canvas1) to display the resulting visualization.
 
The choose_plot() method, depending on the value of the selection
("Country" in this case), dynamically generates a pie chart based on the data
provided in self.df and self.df_dummy. This allows your application to
respond to user interactions, enabling users to explore different aspects of
the dataset visually. By binding the function to the Listbox selection event,
your application enhances user interactivity and facilitates the exploration
of data categories through intuitive data visualizations, making it more user-
friendly and engaging.
 

Figure 5 The distribution of country
 
 
Distribution of Age Group
Add this code to the end of choose_plot() method in Helper_Plot class:
 
 elif chosen == "Age Group":
 self.plot_piechart(df2, "AgeGroup", figure2, canvas2)  



 
In this code, when the user selects "Age Group" from the Listbox, it triggers
the execution of the choose_list_widget() function. Within this function,
there's a conditional branch that checks if the chosen option is "Age
Group." If this condition is met, it calls the plot_piechart() method of the
self.obj_plot object, passing the modified DataFrame df2, specifically the
"AgeGroup" column, as well as UI elements (figure2 and canvas2). As a
result, when "Age Group" is selected, it dynamically generates a pie chart
based on the distribution of age groups in the dataset, providing users with a
visual representation of age group demographics within the data, as shown
in figure 6. This interactive feature enhances the user experience by
allowing users to explore and understand data patterns through intuitive
data visualizations.

Figure 6 The distribution of age group
 
 
Distribution of Education with Response 0
Add this code to the end of choose_plot() method in Helper_Plot class:
 
 elif chosen == "Education with Response 0":
 self.plot_piechart(df2[df2.Response==0], "Education", figure1, canvas1, "
with Response 0")
 



In this code, when the user selects "Education with Response 0" from the
Listbox, it triggers the execution of the choose_list_widget() function.
Within this function, there's a conditional branch that checks if the chosen
option is "Education with Response 0." If this condition is met, it filters the
DataFrame df2 to include only rows where the "Response" column equals 0
(indicating non-responsiveness), and then calls the plot_piechart() method
of the self.obj_plot object. It passes the filtered DataFrame, specifically the
"Education" column, along with UI elements (figure1 and canvas1), and an
additional title extension " with Response 0." As a result, when "Education
with Response 0" is selected, it dynamically generates a pie chart
representing the distribution of education levels among non-responsive
customers, allowing users to visually explore the educational background of
unresponsive customers in the dataset. This interactive feature aids in
analyzing the characteristics of customers who did not respond to marketing
efforts as shown in figure 7.
 
 
 

Figure 7 The distribution of education with response 0
 
 
Distribution of Education with Response 1
Add this code to the end of choose_plot() method in Helper_Plot class:



 
 elif chosen == "Education with Response 1":
 self.plot_piechart(df2[df2.Response==1], "Education", figure2, canvas2, "
with Response 1")
 
In this code, when the user selects "Education with Response 1" from the
Listbox, it triggers the execution of the choose_list_widget() function.
Within this function, there's a conditional branch that checks if the chosen
option is "Education with Response 1." If this condition is met, it filters the
DataFrame df2 to include only rows where the "Response" column equals 1
(indicating responsiveness), and then calls the plot_piechart() method of the
self.obj_plot object. It passes the filtered DataFrame, specifically the
"Education" column, along with UI elements (figure2 and canvas2), and an
additional title extension " with Response 1." As a result, when "Education
with Response 1" is selected, it dynamically generates a pie chart
representing the distribution of education levels among responsive
customers, allowing users to visually explore the educational background of
responsive customers in the dataset. This interactive feature aids in
analyzing the characteristics of customers who responded positively to
marketing efforts, as shown in figure 8.
 
 

Figure 8 The distribution of education with response 1



 
 
Distribution of Country with Response 0 and 1
Add this code to the end of choose_plot() method in Helper_Plot class:
 
 elif chosen == "Country with Response 0":
 self.plot_piechart(df2[df2.Response==0], "Country", figure1, canvas1, "
with Response 0")
 
 elif chosen == "Country with Response 1":
 self.plot_piechart(df2[df2.Response==1], "Country", figure2, canvas2, "
with Response 1")    
 
In this code, when the user selects either "Country with Response 0" or
"Country with Response 1" from the Listbox, it triggers the execution of the
choose_list_widget() function. Within this function, there are conditional
branches that check the chosen option. If the chosen option is "Country
with Response 0," it filters the DataFrame df2 to include only rows where
the "Response" column equals 0 (indicating non-responsiveness). It then
calls the plot_piechart() method of the self.obj_plot object, passing the
filtered DataFrame, specifically the "Country" column, along with UI
elements (figure1 and canvas1), and an additional title extension " with
Response 0." This generates a pie chart showing the distribution of
countries among non-responsive customers. Similarly, if the chosen option
is "Country with Response 1," it filters the DataFrame to include only rows
where the "Response" column equals 1 (indicating responsiveness), and
then generates a pie chart for the distribution of countries among responsive
customers using UI elements (figure2 and canvas2) and an additional title
extension " with Response 1." These features enable users to visually
explore the impact of a customer's country of residence on their
responsiveness to marketing efforts, providing valuable insights for
marketing strategies. The result is shown in figure 9.
 



Figure 9 The distribution of country with response 0 or 1
 
 
Histogram of Income
Add this code to the end of choose_plot() method in Helper_Plot class:
 
 elif chosen == "Income":
 self.another_versus_response(df1, "Income", 32, figure1, canvas1)
 
In this code segment, when the user selects "Income" from the Listbox, it
triggers the execution of the choose_list_widget() function. Within this
function, there is a conditional branch that checks if the chosen option is
"Income." If it is, the code calls the another_versus_response() method,
passing the DataFrame df1, the feature "Income," the number of bins (set to
32), UI elements (figure1 and canvas1), and an empty title. This method
generates a subplot with two histograms. The first histogram shows the
distribution of income for non-responsive customers (those with
"Response" equal to 0), and the second histogram shows the distribution of
income for responsive customers (those with "Response" equal to 1). By
comparing these histograms, users can gain insights into how income levels
may impact customer responsiveness to marketing efforts. The result is
shown in figure 10.
 



 

Figure 10 The histogram of income
 
 
Histogram of Customer Age
Add this code to the end of choose_plot() method in Helper_Plot class:
 
 elif chosen == "Customer Age":
 self.another_versus_response(df1, "Customer_Age", 32, figure1, canvas1)
 
In this code, when the user selects "Customer Age" from the Listbox, it
triggers the execution of the choose_list_widget() function. Within this
function, there is a conditional branch that checks if the chosen option is
"Customer Age." If it is, the code calls the another_versus_response()
method, passing the DataFrame df1, the feature "Customer_Age," the
number of bins (set to 32), UI elements (figure1 and canvas1), and an
empty title. This method generates a subplot with two histograms. The first
histogram shows the distribution of customer age for non-responsive
customers (those with "Response" equal to 0), and the second histogram
shows the distribution of customer age for responsive customers (those with
"Response" equal to 1). By comparing these histograms, users can gain
insights into how customer age may impact customer responsiveness to
marketing efforts. The result is shown in figure 11.



 

Figure 11 The histogram of customer age
 
 
Histogram of Amount of Purchased Wines
Add this code to the end of choose_plot() method in Helper_Plot class:
 
 elif chosen == "Amount of Wines":
 self.another_versus_response(df1, "MntWines", 32, figure2, canvas2)
 
In this code, when the user selects "Amount of Wines" from the Listbox, it
triggers the execution of the choose_list_widget() function. Within this
function, there is a conditional branch that checks if the chosen option is
"Mount of Wines." If it is, the code calls the another_versus_response()
method, passing the DataFrame df1, the feature "MntWines," the number of
bins (set to 32), UI elements (figure2 and canvas2), and an empty title. This
method generates a subplot with two histograms. The first histogram shows
the distribution of the amount of wines purchased by non-responsive
customers (those with "Response" equal to 0), and the second histogram
shows the distribution of the amount of wines purchased by responsive
customers (those with "Response" equal to 1). By comparing these
histograms, users can gain insights into how the amount of wines purchased



may impact customer responsiveness to marketing efforts. The result is
shown in figure 12.
 
 
 

Figure 12 The histogram of amount of purchased wines
 
 
Distribution of Education versus Response
Add this code to the end of choose_plot() method in Helper_Plot class:
 
 elif chosen == "Education versus Response":
 self.dist_one_vs_another_plot(df2, "Education", "Response", figure2,
canvas2, chosen)
 
In this code, when the user selects "Education versus Response" from the
Listbox, it triggers the execution of the choose_list_widget() function.
Within this function, there is a conditional branch that checks if the chosen
option is "Education versus Response." If it is, the code calls the
dist_one_vs_another_plot() method, passing the DataFrame df2, the
features "Education" and "Response," UI elements (figure2 and canvas2),
and the title "Education versus Response." This method generates a stacked
bar plot that visualizes the relationship between a customer's education



level (e.g., high school, university degree) and their responsiveness to
marketing efforts (0 or 1). Each bar in the plot represents a specific
education category, and the height of each segment within the bar indicates
the count of responsive and non-responsive customers within that education
category. This visualization helps users understand how education level
might influence customer responsiveness. The result is shown in figure 13.

Figure 13 The distribution of education versus response
 
 
Distribution of Age Group versus Response
Add this code to the end of choose_plot() method in Helper_Plot class:
 
 elif chosen == "Age Group versus Response":
 self.dist_one_vs_another_plot(df2, "AgeGroup", "Response", figure1,
canvas1, chosen)
 
The purpose of this code is to create a stacked bar plot that visually
represents the relationship between different age groups of customers and
their responsiveness to marketing efforts. Specifically, it focuses on
comparing how different age groups within the dataset respond to
marketing campaigns.
 
Here's how it works:



1. chosen is a variable that holds the currently selected item from
the Listbox in the graphical user interface (GUI).

2. When the user selects "Age Group versus Response" from the
Listbox, this condition (elif chosen == "Age Group versus
Response") is met, and the code block is executed.

3. The dist_one_vs_another_plot() method is called with specific
parameters:

df2 is the DataFrame containing the dataset, which includes columns
for "AgeGroup" (categorized age groups) and "Response" (indicating
whether a customer responded to marketing).

"AgeGroup" and "Response" are specified as the two
variables to be analyzed in the plot.
figure1 and canvas1 are UI elements used for displaying
the plot.
"Age Group versus Response" is provided as the title of
the plot.

The resulting plot will visually represent how each age group (e.g.,
Generation X, Baby Boomers) is divided into segments, with each segment
representing the count of customers who responded (1) and those who did
not respond (0) to marketing efforts. This visualization helps marketers and
data analysts understand the responsiveness of different age groups and
make data-driven decisions related to marketing strategies and targeting
specific customer demographics. The result is shown in figure 14.
 



Figure 14 The distribution of age group versus response
 
 
Distribution of Marital Status versus Response
Add this code to the end of choose_plot() method in Helper_Plot class:
 
 elif chosen == "Marital Status versus Response":
 self.dist_one_vs_another_plot(df2, "Marital_Status", "Response", figure2,
canvas2, chosen)
 
The purpose of this code is to create a stacked bar plot that visually
represents the relationship between different marital statuses of customers
and their responsiveness to marketing efforts. Specifically, it focuses on
comparing how different marital statuses within the dataset influence the
response of customers to marketing campaigns.
 
The resulting plot will visually represent how each marital status category
(e.g., Married, Single, Divorced) is divided into segments, with each
segment representing the count of customers who responded (1) and those
who did not respond (0) to marketing efforts. This visualization helps
marketers and data analysts understand the impact of marital status on
customer responsiveness, aiding in marketing strategy decisions and
targeted campaigns. The result is shown in figure 15.



 

Figure 15 The distribution of marital status versus response
 
 
Distribution of Country versus Response
Add this code to the end of choose_plot() method in Helper_Plot class:
 
 elif chosen == "Country versus Response":
 self.dist_one_vs_another_plot(df2, "Country", "Response", figure1,
canvas1, chosen)
 
The purpose of this code block is to create a stacked bar plot that visually
represents the relationship between different countries of customers and
their responsiveness to marketing efforts. Specifically, it focuses on
comparing how different countries within the dataset influence the response
of customers to marketing campaigns.
 
The resulting plot will visually represent how each country category (e.g.,
Spain, France, Germany) is divided into segments, with each segment
representing the count of customers who responded (1) and those who did
not respond (0) to marketing efforts. This visualization helps marketers and
data analysts understand the impact of the country of residence on customer



responsiveness, aiding in marketing strategy decisions and targeted
campaigns. The result is shown in figure 16.
 

Figure 16 The distribution of country versus response
 
 
Distribution of Number of Dependants versus Response
Add this code to the end of choose_plot() method in Helper_Plot class:
 
 elif chosen == "Number of Dependants versus Response":
 self.dist_one_vs_another_plot(df2, "Num_Dependants", "Response",
figure2, canvas2, chosen)
 
The resulting plot will visually represent how the count of dependants in a
customer's household impacts their responsiveness to marketing efforts. It
will show stacked bars, with each segment representing the count of
customers who responded (1) and those who did not respond (0) based on
the number of dependants. This visualization can help marketers and
analysts understand the family structure's role in customer responses and
guide marketing strategies accordingly. The result is shown in figure 17.
 
 



Figure 17 The distribution of number of dependants versus response
 
 
Distribution of Customer Ages Among Different Educational Levels and
Countries
Add this code to the end of choose_plot() method in Helper_Plot class:
 
 elif chosen == "Country versus Customer Age Per Education":
 self.box_plot(df1, "Country", "Customer_Age", "Education", figure1,
canvas1, chosen)
 
The code serves the purpose of generating a box plot to visualize how
customer ages are distributed among different education levels and
countries. This code is designed to analyze and represent the variations in
customer ages within specific educational groups and across various
countries.
 
When a user selects "Country versus Customer Age Per Education" from
the Listbox in the graphical user interface (GUI), the associated condition is
met, triggering the execution of this code. The box_plot() function is then
called with specific parameters. It takes as input a DataFrame (df1) that
contains the dataset, including columns for "Country," "Customer_Age"
(representing customer ages), and "Education" (indicating the educational



background of customers). The "Country" variable is specified as the x-
axis, "Customer_Age" as the y-axis, and "Education" as the hue variable for
color categorization. Additionally, it utilizes figure1 and canvas1 as UI
elements for displaying the resulting plot, with the title "Country versus
Customer Age Per Education."
 
The generated box plot will display multiple boxes, each corresponding to a
unique combination of country and education level. These boxes visually
represent the distribution of customer ages within these specific groups.
Analyzing this plot can provide valuable insights into age variations among
customers from different countries and educational backgrounds. Such
insights can be instrumental in tailoring marketing strategies or targeted
campaigns to effectively reach and engage specific customer segments. The
result is shown in figure 18.
 

Figure 18 The distribution of customer ages among different education
levels and countries

 
 
Distribution of Total Number of Purchases and Educational Levels within
Different Marital Status
Add this code to the end of choose_plot() method in Helper_Plot class:
 



 elif chosen == "Num_TotalPurchases versus Education Per Marital Status":
 self.box_plot(df1, "Education", "Num_TotalPurchases", "Marital_Status",
figure2, canvas2, chosen)
 
 
The code is responsible for creating a box plot that illustrates the
relationship between the total number of purchases made by customers
("Num_TotalPurchases") and their educational levels ("Education") within
different marital status categories ("Marital_Status"). This visualization is
useful for understanding how the number of purchases varies among
customers with different educational backgrounds across various marital
status groups.
 
When a user selects "Num_TotalPurchases versus Education Per Marital
Status" from the Listbox in the graphical user interface (GUI), the
associated condition is satisfied, and this code is executed. The box_plot()
function is then invoked with specific parameters. It takes a DataFrame
(df1) containing the dataset as input, including columns for "Education,"
"Num_TotalPurchases," and "Marital_Status." In the resulting box plot,
"Education" is designated as the x-axis variable, "Num_TotalPurchases" as
the y-axis variable, and "Marital_Status" as the hue variable for
distinguishing different marital status categories. Furthermore, it utilizes
figure2 and canvas2 as UI components for presenting the generated plot,
along with the title "Num_TotalPurchases versus Education Per Marital
Status."
 
The resulting box plot will display a series of boxes, each representing a
specific combination of education level and marital status. These boxes
visually depict the distribution of the total number of purchases made by
customers within these distinct groups. Analyzing this plot can provide
insights into how customers' educational backgrounds and marital statuses
relate to their purchasing behaviors. Such insights can be valuable for
tailoring marketing strategies or product offerings to different customer
segments, optimizing business operations, and making data-driven
decisions. The result is shown in figure 19.
 



Figure 19 The distribution of total number of purchases and educational
levels within different marital status

 
 
 
 
Distribution of Categorized Income versus Response
Add this code to the end of binds_event() method in Main_Class:
 
 #Binds listbox to a function
 self.obj_window.listbox.bind("<<ListboxSelect>>",
self.choose_list_widget)
 
This code binds a function to the <<ComboboxSelected>> event of a tkinter
Combobox widget (self.obj_window.combo1). The purpose of this code is
to associate a specific action or behavior with the selection of an item from
combo1.
 
When the user selects an item from combo1, the choose_combobox1()
function will be triggered. This function will be responsible for handling the
user's choice and performing the associated actions or displaying relevant
information based on the selected item.
 



Binding events to widgets like this is a common practice in GUI
applications to make the interface responsive and interactive. In this
specific case, it suggests that the code is designed to react dynamically to
the user's selection from the combo box, enhancing the user experience and
allowing for more versatile interactions with the application.
 
Then, define a new method named choose_combobox1() in Main_Class:
 
 def choose_combobox1(self, event):
        chosen = self.obj_window.combo1.get()
 self.obj_plot.choose_category(self.df_dummy, chosen,
 self.obj_window.figure1, self.obj_window.canvas1,
 self.obj_window.figure2, self.obj_window.canvas2)
 
This code defines the choose_combobox1() function, which is triggered
when an item is selected in the combo1 tkinter Combobox widget.
 
Here's a breakdown of what this function does:

1. chosen = self.obj_window.combo1.get(): It retrieves the
currently selected item from the combo1 Combobox and stores it
in the chosen variable.

2. self.obj_plot.choose_category(self.df_dummy, chosen,
self.obj_window.figure1, self.obj_window.canvas1,
self.obj_window.figure2, self.obj_window.canvas2): It calls the
choose_category method of the self.obj_plot object (an instance
of the Helper_Plot class) and passes several arguments to it:

self.df_dummy: The DataFrame containing the categorized
data.
chosen: The selected item from combo1.
self.obj_window.figure1 and self.obj_window.canvas1:
Figure and canvas objects for plotting in the first section of
the application.
self.obj_window.figure2 and self.obj_window.canvas2:
Figure and canvas objects for plotting in the second
section of the application.



The purpose of this function is to respond to the user's selection from
combo1 and trigger the appropriate plotting or visualization action based on
the chosen item. The choose_category() method in the Helper_Plot class
will determine which specific visualization to generate based on the chosen
category. This approach makes the application interactive, allowing the user
to explore different visualizations based on their selection.
 
Then, define a new method named choose_category() in Helper_Plot class:
 
 def choose_category(self, df, chosen, figure1, canvas1, figure2, canvas2):  
 if chosen == "Categorized Income versus Response":
 self.dist_one_vs_another_plot(df, "Income", "Response", figure1, canvas1, 
chosen)  
 
This function takes several parameters, including a DataFrame (df), a string
chosen, and four objects related to plotting (figure1, canvas1, figure2,
canvas2). Its purpose is to enable the selection of different visualizations
based on the user's choice from the chosen variable.
 

Figure 20 The distribution of categorized income versus response
 
In this specific code block, there is a single conditional branch that checks
if the value of chosen is equal to "Categorized Income versus Response." If



this condition is met, it invokes the dist_one_vs_another_plot() function to
create a particular type of plot. The purpose of this visualization is to
compare the categorized income levels of customers ("Income") with their
response behavior ("Response"). This comparison can help analyze how
different income categories are associated with customer responses, which
is essential for understanding customer behavior and tailoring marketing
strategies or product offerings accordingly. The result is shown in figure 20.
 
 
Distribution of Categorized Total Purchase versus Categorized Income
Add this code to the end of choose_category() method in Helper_Plot class:
 
 if chosen == "Categorized Total Purchase versus Categorized Income":
 self.dist_one_vs_another_plot(df, "Num_TotalPurchases", "Income",
figure2, canvas2, chosen)
 
The purpose of this code is to enable an interactive data exploration feature
within an application. When the user selects this particular option, the code
generates a specific type of plot that visually represents the relationship
between categorized total purchases and categorized income. This can help
users gain insights into how these two variables are related within the
dataset, allowing for data-driven decision-making and exploration. The
result is shown in figure 21.
 



Figure 21 The distribution of categorized total purchase versus categorized
income

 
 
 
 
 
Distribution of Categorized Recency versus Categorized Total Purchase
Add this code to the end of choose_category() method in Helper_Plot class:
 
 if chosen == "Categorized Recency versus Categorized Total Purchase":
 self.dist_one_vs_another_plot(df, "Recency", "Num_TotalPurchases",
figure1, canvas1, chosen)
 
The purpose of the code is to create a specific data visualization when the
user selects "Categorized Recency versus Categorized Total Purchase" from
a user interface element (a dropdown or combo box). This specific
visualization involves comparing two categorical variables: "Categorized
Recency" and "Categorized Total Purchase."
 
The resulting plot allows viewers to understand how the distribution of total
purchases varies across different recency categories. For example, it helps
answer questions like:



Are customers who made purchases within the last 10 days more
to fall into a specific total purchase category?
How does recency impact the distribution of total purchases?

By presenting this information visually, the plot makes it easier to identify
trends and patterns within the data and draw insights related to the
interaction between these two categorical variables. The result is shown in
figure 22.
 

Figure 22 The distribution of categorized recency versus categorized total
purchase

 
 
Distribution of Categorized Customer Month versus Categorized
Customer Age
Add this code to the end of choose_category() method in Helper_Plot class:
 
 if chosen == "Categorized Customer Month versus Categorized Customer
Age":
 self.dist_one_vs_another_plot(df, "Dt_Customer_Month",
"Customer_Age", figure2, canvas2, chosen)
 



Figure 23 The distribution of categorized customer month versus
categorized customer age

 
The purpose of the code is to create a visualization that shows the
relationship between two categorical variables: "Categorized Customer
Month" and "Categorized Customer Age." This visualization appears to be
a stacked bar plot, and here's how it can be interpreted:

X-Axis (Categorized Customer Month): The x-axis represents
different categories or intervals for "Customer Month." These
categories represent different months or groups of months in
which customers joined or engaged with a service or product.
Y-Axis (Count of Cases): The y-axis represents the count of
cases or observations within each combination of "Categorized
Customer Month" and "Categorized Customer Age." Each
stacked bar on the plot represents the count of cases for a
specific combination of these two categorical variables.
Stacked Bars: Each category of "Categorized Customer Month"
on the x-axis is depicted as a stacked bar. Within each stacked
bar, there are segments or sections, each corresponding to a
specific "Categorized Customer Age" category. The height of
each segment represents the count of cases that fall into that
particular combination of month and age group.



This type of visualization helps in understanding how the distribution of
customer ages varies across different months or periods when customers
joined or engaged with a product or service. It allows viewers to explore
whether certain months attract customers of specific age groups and
whether there are any patterns or trends in the data related to these two
categorical variables.
 
 
Distribution of Categorized Amount of Gold Products Purchased versus
Categorized Income
Add this code to the end of choose_category() method in Helper_Plot class:
 
 if chosen == "Categorized Amount of Gold Products versus Categorized
Income":
 self.dist_one_vs_another_plot(df, "MntGoldProds", "Income", figure1,
canvas1, chosen)
 

Figure 24 The distribution of categorized amount of gold Products
purchased versus categorized income

 
The code segment serves the purpose of generating a stacked bar plot to
visually depict the association between two distinct variables: "Categorized
Amount of Gold Products" and "Categorized Income." This visualization is



designed to offer insights into how customer income levels relate to their
expenditure on gold products. The x-axis represents various categories or
intervals delineating the amount spent on gold products, encompassing
ranges like "0-30," "30-50," "50-80," and so forth. Meanwhile, the y-axis
quantifies the number of cases or observations in each combination of
"Categorized Amount of Gold Products" and "Categorized Income." Each
stacked bar on the plot corresponds to a specific "Categorized Amount of
Gold Products" category and portrays the count of cases for that precise
amalgamation of these two categorical variables. These stacked bars further
consist of segments, with each segment symbolizing a distinct "Categorized
Income" category. The segment's height reflects the count of cases
belonging to the particular combination of gold product spending and
income category. Additionally, the plot is expected to feature a legend to
elucidate the color coding associated with various "Categorized Income"
categories, along with a title like "Categorized Amount of Gold Products
versus Categorized Income" to succinctly convey the plot's focus. The
result is shown figure 24.
 
This type of visual representation serves as a powerful exploratory tool,
enabling an examination of potential trends or patterns within the data. It
allows for the investigation of whether individuals with higher incomes
exhibit greater expenditures on gold products compared to those with lower
incomes. Moreover, it facilitates the identification of any disparities in
spending behaviors on gold products across different income groups.
Through this visualization, one can gain valuable insights into consumer
preferences and behaviors, which can be instrumental for data-driven
decision-making in marketing or business strategies.
 
 
Distribution of Categorized Amount of Fish Products Purchased versus
Categorized Total Amount Spent
Add this code to the end of choose_category() method in Helper_Plot class:
 
 if chosen == “Categorized Amount of Fish Products versus Categorized
Total AmountSpent”:



 self.dist_one_vs_another_plot(df, “MntFishProducts”,
“TotalAmount_Spent”, figure2, canvas2, chosen)
 
The code is responsible for generating a visual representation in the form of
a histogram comparing two distinct variables: "Categorized Amount of Fish
Products" and "Categorized Total Amount Spent." This visualization aims
to offer insights into the relationship between two aspects of customer
behavior. The x-axis of the histogram delineates different categories or
intervals representing the amount spent on fish products, such as "0-10,"
"10-20," "20-40," and so forth. Meanwhile, the y-axis quantifies the number
of cases or observations falling within each combination of "Categorized
Amount of Fish Products" and "Categorized Total Amount Spent." Each bar
on the histogram corresponds to a specific category of "Categorized
Amount of Fish Products" and represents the count of cases that belong to
that particular combination of these two categorical variables. The height of
each bar reflects the number of cases within that specific combination. This
visualization aims to provide a clear and concise overview of how spending
on fish products relates to the total amount spent by customers.
 
Histograms are valuable tools for visualizing the distribution and
relationships between variables. In this specific context, this visualization
enables a quick assessment of whether customers who spend more on fish
products tend to have higher total expenditure or whether there are
noticeable patterns in spending behavior. It also allows for the identification
of any concentration of cases within specific combinations of spending
categories. By creating this histogram, one can gain insights into customer
preferences and spending habits, which can be valuable for marketing
strategies and business decision-making.
 



Figure 25 distribution of categorized amount of fish products purchased
versus categorized total amount spent

 
 
Distribution of Categorized Amount of Meat Products Purchased versus
Categorized Recency
Add this code to the end of choose_category() method in Helper_Plot class:
 
 if chosen == "Categorized Amount of Meat Products versus Categorized
Recency":
 self.dist_one_vs_another_plot(df, "MntMeatProducts", "Recency", figure1,
canvas1, chosen)
 
The code is responsible for generating a visual representation in the form of
a histogram comparing two distinct variables: "Categorized Amount of
Meat Products" and "Categorized Recency." This visualization aims to offer
insights into the relationship between these two aspects of customer
behavior. The x-axis of the histogram consists of different categories or
intervals representing the amount spent on meat products, such as "0-50,"
"50-100," "100-200," and so forth. Meanwhile, the y-axis quantifies the
number of cases or observations falling within each combination of
"Categorized Amount of Meat Products" and "Categorized Recency." Each
bar on the histogram corresponds to a specific category of "Categorized



Amount of Meat Products" and represents the count of cases that belong to
that particular combination of these two categorical variables. The height of
each bar reflects the number of cases within that specific combination. This
visualization aims to provide a clear and concise overview of how spending
on meat products relates to the recency of customer interactions.
 
Histograms are valuable tools for visualizing the distribution and
relationships between variables. In this specific context, this visualization
enables a quick assessment of whether customers who spend more on meat
products tend to have more recent interactions or whether there are
noticeable patterns in spending behavior concerning recency. It also allows
for the identification of any concentration of cases within specific
combinations of spending categories and recency intervals. By creating this
histogram, one can gain insights into customer preferences and spending
habits relative to the recency of their interactions, which can be valuable for
marketing strategies and business decision-making.
 

Figure 26 distribution of categorized amount of meat products purchased
versus categorized recency

 
 
Plotting Correlation Matrix
Add a new method named plot_corr_mat() in Helper_Plot class:



 
 def plot_corr_mat(self, df, figure, canvas):
        figure.clear()    
        plot1 = figure.add_subplot(1,1,1)  
        categorical_columns = df.select_dtypes(include=['object',
'category']).columns
        df_removed = df.drop(columns=categorical_columns)
        corrdata = df_removed.corr()
 
        annot_kws = {"size": 5}
        sns.heatmap(corrdata, ax = plot1, lw=1, annot=True, cmap="Reds",
annot_kws=annot_kws)
        plot1.set_title('Correlation Matrix', fontweight ="bold",fontsize=14)
 
 # Set font for x and y labels
        plot1.set_xlabel('Features', fontweight="bold", fontsize=12)
        plot1.set_ylabel('Features', fontweight="bold", fontsize=12)
 
 # Set font for tick labels
        plot1.tick_params(axis='both', which='major', labelsize=5)
        plot1.tick_params(axis='both', which='minor', labelsize=5)
 
        figure.tight_layout()
        canvas.draw()
 
The code generates a correlation matrix heatmap to visualize the
relationships between numerical features in a dataset. Here are the steps of
the code:

1. Clear Existing Plot:
The function begins by clearing any existing content on the specified
figure to ensure a clean canvas for the new plot.

2. Create a Subplot:
A subplot is added to the figure using figure.add_subplot(1, 1, 1).
This creates a single subplot in a 1x1 grid for the correlation matrix
heatmap.

3. Select Categorical Columns:



The code identifies and selects the categorical columns in the
DataFrame using df.select_dtypes(include=['object',
'category']).columns. These categorical columns are excluded from
the correlation matrix calculation as they are not numerical.

4. Remove Categorical Columns:
The selected categorical columns are removed from the DataFrame
using df.drop(columns=categorical_columns). This creates a new
DataFrame (df_removed) containing only numerical features.

5. Calculate Correlation Matrix:
The code calculates the correlation matrix for the numerical features
in df_removed using corrdata = df_removed.corr(). This matrix
contains pairwise correlations between all numerical features.

6. Customize Heatmap:
annot_kws is a dictionary specifying additional attributes
for the annotations on the heatmap. In this case, it sets the
annotation text size to 5.
sns.heatmap() is used to create the heatmap, and it is
plotted on the previously created subplot (ax=plot1).
The annot=True argument ensures that the correlation
values are displayed on the heatmap.
The cmap argument specifies the color map for the
heatmap, and in this case, "Reds" is used.
The annot_kws dictionary is passed to customize
annotation attributes.

7. Set Titles and Labels:
The title of the plot is set to 'Correlation Matrix' with
specified font properties.
Labels for the x and y axes are set with font properties to
indicate that the features represent the same set of features
on both axes.

8. Adjust Tick Labels:
The tick labels for both major and minor ticks on the plot's axes are
adjusted to have a font size of 5.

9. Tight Layout:
figure.tight_layout() is called to ensure that the plot layout is adjusted
to fit properly within the figure.



10. Draw the Plot:
Finally, canvas.draw() is called to render and display the correlation
matrix heatmap on the canvas within the user interface.

 
Then, add this code to the end of binds_event() method in Main_Class:
 
 # Binds combobox2 to a function
 self.obj_window.combo2.bind("<<ComboboxSelected>>",
self.choose_combobox2)
 
This line of code binds a function to an event for a specific Combobox
(dropdown) widget in a graphical user interface (GUI) application, typically
created using the tkinter library in Python.
 
Here's an explanation of this line of code:

self.obj_window.combo2: This part of the code references a
Combobox widget (combo2) that is part of the obj_window
object, which appears to be an instance of a custom window
design class. This Combobox widget is used to display a list of
options that the user can choose from.
.bind("<<ComboboxSelected>>", self.choose_combobox2): This
part of the code uses the bind method to associate a function
(self.choose_combobox2) with the event generated when an item
is selected in the Combobox. The event being bound to is "
<<ComboboxSelected>>", which is a predefined event in tkinter
that is triggered when the user selects an item from the
Combobox dropdown list.
self.choose_combobox2: This is the function that will be
executed when the event (item selection in the Combobox)
occurs. It appears that this function is responsible for handling
the user's choice and performing specific actions based on the
selected item.

In summary, this line of code sets up an event-handler mechanism for the
second Combobox (combo2) in the GUI application. When the user selects



an item from this Combobox, the self.choose_combobox2 function will be
called to respond to the user's selection, possibly by updating the GUI or
performing other relevant actions based on the selected item.
 
Next, add a new method named choose_combobox2() in Main_Class:
 
 def choose_combobox2(self, event):
        chosen = self.obj_window.combo2.get()
 self.obj_plot.choose_plot_more(self.df_final, chosen,
 self.X, self.y,
 self.obj_window.figure1,
 self.obj_window.canvas1, self.obj_window.figure2,
 self.obj_window.canvas2)
 
This code defines a function named choose_combobox2() that serves as an
event handler for a Combobox (combo2) in a graphical user interface (GUI)
application, created using the tkinter library in Python. Here's an
explanation of what this function does:

1. event: This function takes an event parameter, which represents
the event that triggered the function's execution. In this case, the
event is the selection of an item in combo2.

2. chosen = self.obj_window.combo2.get(): Within the function, it
retrieves the currently selected item from combo2 using the get()
method. This selected item is stored in the chosen variable.

3. self.obj_plot.choose_plot_more(...): This line of code calls a
method named choose_plot_more on an instance of the obj_plot
object. It passes several arguments to this method, including:

self.df_final: The dataset, which is expected to be a Pandas
DataFrame.
chosen: The selected item from combo2.
self.X and self.y: Input and output variables used for data
plotting or analysis.
self.obj_window.figure1, self.obj_window.canvas1,
self.obj_window.figure2, self.obj_window.canvas2: These
appear to be graphical components (e.g., Matplotlib figures
and canvases) associated with the GUI.



The choose_plot_more() method in obj_plot is expected to handle the
selected item and possibly generate plots, display data, or perform other
relevant actions based on the user's choice. This function essentially bridges
the user's interaction with the GUI Combobox (combo2) and the
corresponding data visualization or analysis functionality provided by the
obj_plot object.
 
Then, in Helper_Plot class, define a new method named
choose_plot_more():
 
 def choose_plot_more(self, df, chosen, X, y, figure1, canvas1, figure2, 
canvas2):  
 if chosen == "Correlation Matrix":
 self.plot_corr_mat(df, figure1, canvas1)
 

Figure 27 The correlation matrix
 
The choose_plot_more() method is a part of the application that allows
users to select different types of plots or visualizations. This method
handles the user's choice and calls the appropriate plotting function based
on the chosen option. Here's an explanation of what this specific code block
does:



1. chosen: This parameter represents the user's choice, which is the
type of plot or visualization they want to see. It is passed as an
argument to the method.

2. Inside the method, there is an if statement that checks the value
of chosen. Depending on the value of chosen, a specific plotting
function is called.

3. In this code block, if the chosen value is "Correlation Matrix,"
the method calls another function named plot_corr_mat() with
the following arguments:

df: The dataset (presumably a Pandas DataFrame) on
which the correlation matrix is calculated and visualized.
figure1: A Matplotlib figure where the correlation matrix
plot will be displayed.
canvas1: A Matplotlib canvas associated with figure1 for
rendering the plot.

The plot_corr_mat() function is expected to generate a heatmap-based
correlation matrix plot for the given dataset and display it in the specified
figure and canvas.
 
This code structure allows users to select different types of plots from a
Combobox in the GUI, and the appropriate plotting function is executed
based on their selection. In this case, it handles the "Correlation Matrix"
option, as shown in figure 27.
 
 
Plotting Feature Importance Using Random Forest Classifier
Add a new method named plot_rf_importance() in Helper_Plot class:
 
 def plot_rf_importance(self, X, y, figure, canvas):
        result_rf = self.obj_data.feat_importance_rf(X, y)
        figure.clear()    
        plot1 = figure.add_subplot(1,1,1)  
        sns.set_color_codes("pastel")
        ax=sns.barplot(x = 'Values',y = 'Features', data=result_rf,
color="Blue", ax=plot1)



        plot1.set_title('Random Forest Features Importance', fontweight
="bold",fontsize=14)
 
        plot1.set_xlabel('Features Importance',  fontsize=10)
        plot1.set_ylabel('Feature Labels',  fontsize=10)
 # Set font for tick labels
        plot1.tick_params(axis='both', which='major', labelsize=5)
        plot1.tick_params(axis='both', which='minor', labelsize=5)
        figure.tight_layout()
        canvas.draw()
 
The plot_rf_importance() method is used to generate and display a bar plot
showing the feature importance scores obtained from a Random Forest
model. Below is a step-by-step explanation of what this code does:

1. X and y: These parameters represent the input features
(independent variables) and target variable (dependent variable)
for a machine learning model. The feature importance scores
will be calculated based on these variables.

2. figure and canvas: These parameters represent a Matplotlib
figure and canvas, respectively. The figure is where the bar plot
will be displayed, and the canvas is associated with the figure for
rendering the plot.

3. The method first calculates the feature importances using the
feat_importance_rf method from the obj_data object. This
method presumably fits a Random Forest classifier on the
provided data (X and y) and returns the feature importances.

4. The figure is cleared using figure.clear(), ensuring that it's ready
to display the new plot.

5. A subplot is added to the figure using figure.add_subplot(1, 1,
1). This creates a single subplot within the figure.

6. Matplotlib's sns.barplot function is used to create a bar plot. It
takes the following arguments:

x='Values' and y='Features': These specify the data to be
plotted on the x and y-axes. In this case, the feature
importance scores are on the x-axis, and feature labels are
on the y-axis.



data=result_rf: The data source for the plot, where
result_rf is assumed to be a DataFrame containing feature
names and their importance scores.
color="Blue": This sets the color of the bars in the bar plot.

7. Titles and labels are set for the plot:
plot1.set_title(...): Sets the title of the plot.
plot1.set_xlabel(...): Sets the x-axis label.
plot1.set_ylabel(...): Sets the y-axis label.

8. Tick parameters are adjusted to set the font size for tick labels
using plot1.tick_params(...). This helps improve the readability
of the plot.

9. The figure is tightly formatted using figure.tight_layout() to
ensure that all elements of the plot fit nicely within the figure.

10. Finally, canvas.draw() is called to render the plot on the
associated canvas.

Overall, this method allows you to visualize and explore the feature
importance scores obtained from a Random Forest model using a bar plot.
 

Figure 28 The Random Forest feature importance
 
Add this code to the end of choose_plot_more() in Helper_Plot class:
 
 if chosen == "RF Features Importance":



 self.plot_rf_importance(X, y, figure2, canvas2)
Then, run main_class.py. Choose, “RF Features Importance” in second
combobox to see Random Forest feature importance as shown in figure 28.
 
 
Plotting Feature Importance Using Extra Trees Classifier
Add a new method named plot_et_importance() in Helper_Plot class:
 
 def plot_et_importance(self, X, y, figure, canvas):
        result_rf = self.obj_data.feat_importance_et(X, y)
        figure.clear()    
        plot1 = figure.add_subplot(1,1,1)  
        sns.set_color_codes("pastel")
        ax=sns.barplot(x = 'Values',y = 'Features', data=result_rf, color="Red",
ax=plot1)
        plot1.set_title('Extra Trees Features Importance', fontweight
="bold",fontsize=14)
 
        plot1.set_xlabel('Features Importance',  fontsize=10)
        plot1.set_ylabel('Feature Labels',  fontsize=10)
 # Set font for tick labels
        plot1.tick_params(axis='both', which='major', labelsize=5)
        plot1.tick_params(axis='both', which='minor', labelsize=5)
        figure.tight_layout()
        canvas.draw()
 
The plot_et_importance() method is similar to the previously explained
plot_rf_importance() method but is used to generate and display a bar plot
showing the feature importance scores obtained from an Extra Trees model
(another ensemble machine learning algorithm). Here's a step-by-step
explanation of what this code does:

1. X and y: These parameters represent the input features
(independent variables) and target variable (dependent variable)
for a machine learning model. The feature importance scores
will be calculated based on these variables.



2. figure and canvas: These parameters represent a Matplotlib
figure and canvas, respectively. The figure is where the bar plot
will be displayed, and the canvas is associated with the figure for
rendering the plot.

3. The method first calculates the feature importances using the
feat_importance_et() method from the obj_data object. This
method presumably fits an Extra Trees classifier on the provided
data (X and y) and returns the feature importances.

4. The figure is cleared using figure.clear(), ensuring that it's ready
to display the new plot.

5. A subplot is added to the figure using figure.add_subplot(1, 1,
1). This creates a single subplot within the figure.

6. Matplotlib's sns.barplot function is used to create a bar plot,
similar to the previous explanation. It specifies the data for the x-
axis, y-axis, data source, and bar color.

7. Titles and labels are set for the plot, similar to the previous
explanation.

8. Tick parameters are adjusted to set the font size for tick labels
using plot1.tick_params(...), just like in the previous method.

9. The figure is tightly formatted using figure.tight_layout() to
ensure that all elements of the plot fit nicely within the figure.

10. Finally, canvas.draw() is called to render the plot on the
associated canvas.

In summary, this method allows you to visualize and explore the feature
importance scores obtained from an Extra Trees model using a bar plot,
providing insights into which features are most influential for the model's
predictions.
 
Add this code to the end of choose_plot_more() in Helper_Plot class:
 
 if chosen == "ET Features Importance":
 self.plot_et_importance(X, y, figure2, canvas2)
 
Then, run main_class.py. Choose, “ET Features Importance” in second
combobox to see Random Forest feature importance as shown in figure 29.



 

Figure 29 The Extra Trees feature importance
 
 
Plotting Feature Importance Using Recursive Feature Elimination (RFE)
Add a new method named plot_rfe_importance() in Helper_Plot class:
 
 def plot_rfe_importance(self, X, y, figure, canvas):
        result_lg = self.obj_data.feat_importance_rfe(X, y)
        figure.clear()    
        plot1 = figure.add_subplot(1,1,1)  
        sns.set_color_codes("pastel")
        ax=sns.barplot(x = 'Ranking',y = 'Features', data=result_lg,
color="orange", ax=plot1)
        plot1.set_title('RFE Features Importance', fontweight
="bold",fontsize=14)
 
        plot1.set_xlabel('Features Importance',  fontsize=10)
        plot1.set_ylabel('Feature Labels',  fontsize=10)
 # Set font for tick labels
        plot1.tick_params(axis='both', which='major', labelsize=5)
        plot1.tick_params(axis='both', which='minor', labelsize=5)
        figure.tight_layout()



        canvas.draw()   
 
The plot_rfe_importance() method is used to generate and display a bar plot
showing the feature ranking obtained from a Recursive Feature Elimination
(RFE) process using a Logistic Regression model. Here's a step-by-step
explanation of what this code does:

1. X and y: These parameters represent the input features
(independent variables) and target variable (dependent variable)
for a machine learning model. The feature rankings will be
calculated based on these variables.

2. figure and canvas: These parameters represent a Matplotlib
figure and canvas, respectively. The figure is where the bar plot
will be displayed, and the canvas is associated with the figure for
rendering the plot.

3. The method first calculates the feature rankings using the
feat_importance_rfe method from the obj_data object. This
method presumably performs RFE with a Logistic Regression
model on the provided data (X and y) and returns the feature
rankings.

4. The figure is cleared using figure.clear(), ensuring that it's ready
to display the new plot.

5. A subplot is added to the figure using figure.add_subplot(1, 1,
1). This creates a single subplot within the figure.

6. Matplotlib's sns.barplot function is used to create a bar plot. It
specifies the data for the x-axis, y-axis, data source, and bar
color.

7. Titles and labels are set for the plot, similar to the previous
explanations.

8. Tick parameters are adjusted to set the font size for tick labels
using plot1.tick_params(...), just like in the previous methods.

9. The figure is tightly formatted using figure.tight_layout() to
ensure that all elements of the plot fit nicely within the figure.

10. Finally, canvas.draw() is called to render the plot on the
associated canvas.



In summary, this method allows you to visualize and explore the feature
rankings obtained from an RFE process using a Logistic Regression model.
The bar plot provides insights into the importance of each feature based on
their ranking. Features with lower rankings are considered more important
for the model.
 
 
Add this code to the end of choose_plot_more() in Helper_Plot class:
 
 if chosen == "RFE Features Importance":
 self.plot_rfe_importance(X, y, figure2, canvas2)
 
Then, run main_class.py. Choose, “ET Features Importance” in second
combobox to see Random Forest feature importance as shown in figure 30.
 

Figure 30 The RFE feature importance
 
 
 
 
 
 
 



 
 
 

MACHINE LEARNING MODELS
 
 
 
 
 
 
 
Machine_Learning Class
Create a new python file name machine_learning.py. In it, create a class
named Machine_Learning. It is part of a machine learning workflow and is
responsible for training and evaluating various classification models. Let's
break down its main components and responsibilities:

Imports: The class imports various libraries and modules
necessary for machine learning tasks. These include libraries for
data preprocessing, model selection, evaluation metrics, and
specific machine learning algorithms.
Initialization: The class's constructor initializes an instance of the
Process_Data class as self.obj_data. The Process_Data class
contains methods for data preprocessing and feature engineering.

#machine_learning.py
import numpy as np
from imblearn.over_sampling import SMOTE
from sklearn.model_selection import train_test_split,
RandomizedSearchCV, GridSearchCV, StratifiedKFold
from sklearn.preprocessing import StandardScaler
import joblib
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, accuracy_score,
recall_score, precision_score
from sklearn.metrics import classification_report, f1_score,
plot_confusion_matrix



from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import AdaBoostClassifier,
GradientBoostingClassifier
from xgboost import XGBClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.svm import SVC
import os
import joblib
import pandas as pd
from process_data import Process_Data
 
class Machine_Learning:
 def __init__(self):
 self.obj_data = Process_Data()
 
Oversampling and Splitting Data
In Machine_Learning class, define a new method named
oversampling_splitting() as follows:
 
 def oversampling_splitting(self, X, y):
        sm = SMOTE(random_state=42)
        X,y = sm.fit_resample(X, y.ravel())
 
 #Splits the data into training and testing
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2,
random_state = 2021, stratify=y)   
 
 #Use Standard Scaler
        scaler = StandardScaler()
        X_train_stand = scaler.fit_transform(X_train)
        X_test_stand = scaler.transform(X_test)    
 
 #Saves into pkl files
        joblib.dump(X_train_stand, 'X_train.pkl')



        joblib.dump(X_test_stand, 'X_test.pkl')
        joblib.dump(y_train, 'y_train.pkl')
        joblib.dump(y_test, 'y_test.pkl')  
 
The oversampling_splitting() method within the Machine_Learning class
performs the following tasks:

1. Oversampling: It uses the Synthetic Minority Over-sampling
Technique (SMOTE) to address class imbalance. SMOTE
generates synthetic samples of the minority class to balance the
class distribution. This is done to prevent the model from being
biased towards the majority class. The resulting oversampled
dataset is stored in X and y.

2. Train-Test Split: After oversampling, the method splits the
dataset into training and testing sets using train_test_split from
sklearn.model_selection. The test_size parameter controls the
proportion of data allocated to the test set (in this case, 20% of
the data), and stratify=y ensures that the class distribution is
preserved in both the training and testing sets.

3. Feature Scaling: It scales the features in both the training and
testing sets using StandardScaler from sklearn.preprocessing.
Feature scaling is essential to ensure that all features have the
same scale, which can improve the performance of many
machine learning algorithms.

4. Saving Data: Finally, the method saves the scaled training and
testing data, as well as the corresponding labels (y_train and
y_test), into separate pickle (pkl) files. These files can be used
for training and evaluating machine learning models in the future
without the need to perform data preprocessing again.

Overall, the oversampling_splitting() method prepares the data for machine
learning by addressing class imbalance, splitting it into training and testing
sets, performing feature scaling, and saving the preprocessed data for later
use. This is a critical step in the machine learning workflow to ensure that
models are trained on appropriate data and can be easily reused for
predictions.
Loading Files



In Machine_Learning class, define a new method named loading_files() as
follows:
 
 def load_files(self):
        X_train = joblib.load('X_train.pkl')
        X_test = joblib.load('X_test.pkl')
        y_train = joblib.load('y_train.pkl')
        y_test = joblib.load('y_test.pkl')
 
 return X_train, X_test, y_train, y_test
 
The load_files() method in the Machine_Learning class is responsible for
loading the preprocessed training and testing data from pickle (pkl) files
that were previously saved using the oversampling_splitting method. Here's
what this method does:

1. Loading Data: It uses the joblib.load function to load the
following data files:

X_train.pkl: This file contains the preprocessed and scaled
features (X) of the training dataset.
X_test.pkl: This file contains the preprocessed and scaled
features (X) of the testing dataset.
y_train.pkl: This file contains the labels (y) corresponding
to the training dataset.
y_test.pkl: This file contains the labels (y) corresponding
to the testing dataset.

2. Return Data: After loading these files, the method returns four
variables:

X_train: The preprocessed and scaled features of the
training dataset.
X_test: The preprocessed and scaled features of the testing
dataset.
y_train: The labels corresponding to the training dataset.
y_test: The labels corresponding to the testing dataset.

The purpose of this method is to provide a convenient way to access the
preprocessed data, which can then be used for training and evaluating



machine learning models without the need to perform data preprocessing
again. This separation of data loading and preprocessing from the modeling
process makes it easier to maintain and reuse machine learning pipelines.
 
 
Training Model and Predicting Result
In Machine_Learning class, define two new methods named train_model()
and predict_model() as follows:
 
 def train_model(self, model, X, y):
        model.fit(X, y)
 return model
 
 def predict_model(self, model, X, proba=False):
 if ~proba:
            y_pred = model.predict(X)
 else:
            y_pred_proba = model.predict_proba(X)
            y_pred = np.argmax(y_pred_proba, axis=1)
 
 return y_pred
 
The train_model() and predict_model() methods in the Machine_Learning
class are responsible for training a machine learning model and making
predictions using that trained model. Here's an explanation of each method:

1. train_model(self, model, X, y)
This method takes three arguments:

model: The machine learning model to be trained.
X: The feature matrix (input data) for training.
y: The target labels for training.

2. Inside the method, the fit function is called on the provided
model with the input feature matrix X and target labels y. This
step trains the machine learning model on the provided training
data.

3. Finally, the trained model is returned as the output of the
method.



4. predict_model(self, model, X, proba=False)
This method takes three arguments:

model: The trained machine learning model for making
predictions.
X: The feature matrix (input data) for which predictions
are to be made.
proba (optional, default is False): A boolean flag
indicating whether to return class probabilities (True) or
class labels (False) as predictions.

5. If proba is False, the method uses the predict function of the
model to make class label predictions based on the input features
X. The predicted class labels are stored in the y_pred variable.

6. If proba is True, the method uses the predict_proba function of
the model to obtain class probabilities for each class. It then
selects the class with the highest probability as the predicted
class label and stores it in the y_pred variable.

7. The predicted class labels (or probabilities) are returned as the
output of the method.

These methods are generic and can be used with various machine learning
models for tasks such as classification. They provide a consistent way to
train models and make predictions, making it easier to switch between
different models and evaluate their performance.
 
 
Running Model
In Machine_Learning class, define a new method named run_model() as
follows:
 
 def run_model(self, name, model, X_train, X_test, y_train, y_test,
proba=False):   
        y_pred = self.predict_model(model, X_test, proba)
 
        accuracy = accuracy_score(y_test, y_pred)
        recall = recall_score(y_test, y_pred, average='weighted')
        precision = precision_score(y_test, y_pred, average='weighted')



        f1 = f1_score(y_test, y_pred, average='weighted')
 
 print(name)
 print('accuracy: ', accuracy)
 print('recall: ', recall)
 print('precision: ', precision)
 print('f1: ', f1)
 print(classification_report(y_test, y_pred))
 
 return y_pred
 
The run_model() method in the Machine_Learning class is responsible for
running a trained machine learning model on a test dataset and evaluating
its performance. Here's an explanation of the method:

1. run_model(self, name, model, X_train, X_test, y_train, y_test,
proba=False)

This method takes several arguments:
name: A string representing the name or identifier for the
model being evaluated.
model: The trained machine learning model to be
evaluated.
X_train: The feature matrix of the training data.
X_test: The feature matrix of the testing data.
y_train: The target labels of the training data.
y_test: The target labels of the testing data.
proba (optional, default is False): A boolean flag
indicating whether to return class probabilities (True) or
class labels (False) as predictions.

2. Inside the method, the predict_model() method is called to
obtain predictions from the model on the test data X_test.

3. Several evaluation metrics are calculated based on the predicted
labels and the true labels (y_test). These metrics include:

Accuracy: The proportion of correctly predicted labels.
Recall: A weighted average of the recall scores for each
class.



Precision: A weighted average of the precision scores for
each class.
F1-score: A weighted average of the F1-scores for each
class.

4. The method then prints the model's name, along with the
calculated metrics, to provide an overview of its performance.

5. Finally, the method returns the predicted labels (y_pred). This
can be useful for further analysis or visualization.

The run_model() method serves as a standardized way to evaluate and
compare different machine learning models on the same dataset, making it
easier to assess their effectiveness for a given task.
 
 
Plotting Confusion Matrix and ROC
In Helper_Plot class, define a new method named plot_cm_roc() as follows:
 
 def plot_cm_roc(self, model, X_test, y_test, ypred, name, figure, canvas):
        figure.clear()    
 
 #Plots confusion matrix
        plot1 = figure.add_subplot(2,1,1)  
        cm = confusion_matrix(y_test, ypred, )
        sns.heatmap(cm, annot=True, linewidth=3, linecolor='red', fmt='g',
cmap="Greens", annot_kws={"size": 14}, ax=plot1)
        plot1.set_title('Confusion Matrix' + " of " + name, fontsize=12)
        plot1.set_xlabel('Y predict', fontsize=10)
        plot1.set_ylabel('Y test', fontsize=10)
        plot1.xaxis.set_ticklabels(['Responsive', 'Not Responsive'],
fontsize=10)
        plot1.yaxis.set_ticklabels(['Responsive', 'Not Responsive'],
fontsize=10)
 
 #Plots ROC
        plot2 = figure.add_subplot(2,1,2)
        Y_pred_prob = model.predict_proba(X_test)



        Y_pred_prob = Y_pred_prob[:, 1]
 
        fpr, tpr, thresholds = roc_curve(y_test, Y_pred_prob)
        plot2.plot([0,1],[0,1], color='navy', linestyle='--', linewidth=3)
        plot2.plot(fpr,tpr, color='red', linewidth=3)
        plot2.set_xlabel('False Positive Rate', fontsize=10)
        plot2.set_ylabel('True Positive Rate', fontsize=10)
        plot2.set_title('ROC Curve of ' + name , fontsize=12)
        plot2.grid(True)
 
        figure.tight_layout()
        canvas.draw()  
 
The plot_cm_roc() method in the Helper_Plot class is responsible for
plotting two key visualizations for model evaluation: the confusion matrix
and the Receiver Operating Characteristic (ROC) curve. Here's an
explanation of the method:

1. plot_cm_roc(self, model, X_test, y_test, ypred, name, figure,
canvas)

This method takes several arguments:
model: The trained machine learning model to be
evaluated.
X_test: The feature matrix of the testing data.
y_test: The target labels of the testing data.
ypred: The predicted labels obtained from the model on
the test data.
name: A string representing the name or identifier for the
model being evaluated.
figure: A Matplotlib figure object where the visualizations
will be plotted.
canvas: A Matplotlib canvas object associated with the
figure.

2. Inside the method, two subplots are created within the specified
figure. These subplots are used to display the confusion matrix
and the ROC curve side by side.



3. For the confusion matrix, seaborn is used to create a heatmap of
the confusion matrix (cm). The heatmap includes annotations of
the values within each cell, and the color map is set to "Greens."
Axis labels and tick labels are added to the plot for clarity. The
confusion matrix provides insights into the model's classification
performance.

4. For the ROC curve, the method calculates the False Positive
Rate (FPR) and True Positive Rate (TPR) using the roc_curve
function. It then plots the ROC curve on the second subplot. The
diagonal dashed line represents random guessing, and the red
line represents the ROC curve of the model. The area under the
ROC curve (AUC) is a common metric for assessing the model's
discriminatory power.

5. The resulting plots for the confusion matrix and ROC curve are
displayed in the specified figure. The canvas.draw() function is
called to render and update the plots within the associated
canvas.

This method provides a comprehensive visual summary of a model's
performance, making it easier to assess both its classification accuracy
(through the confusion matrix) and its ability to discriminate between
classes (through the ROC curve).
 
 

Plotting True Values versus Predicted Values
Diagram and Learning Curve
In Helper_Plot class, define a new method named
plot_real_pred_val_learning_curve() as follows:
 
 #Plots true values versus predicted values diagram and learning curve
 def plot_real_pred_val_learning_curve(self, model, X_train, y_train,
X_test, y_test, ypred, name, figure, canvas):
        figure.clear()    
 
 #Plots true values versus predicted values diagram



        plot1 = figure.add_subplot(2,1,1)  
        acc=accuracy_score(y_test, ypred)
        plot1.scatter(range(len(ypred)),ypred,color="blue",
lw=3,label="Predicted")
        plot1.scatter(range(len(y_test)),
            y_test,color="red",label="Actual")
        plot1.set_title("Predicted Values vs True Values of " + name,
fontsize=12)
        plot1.set_xlabel("Accuracy: " + str(round((acc*100),3)) + "%")
        plot1.legend()
        plot1.grid(True, alpha=0.75, lw=1, ls='-.')
 
 #Plots learning curve
        train_sizes=np.linspace(.1, 1.0, 5)
        train_sizes, train_scores, test_scores, fit_times, _ =
learning_curve(model,
            X_train, y_train, cv=None, n_jobs=None, train_sizes=train_sizes,
return_times=True)
        train_scores_mean = np.mean(train_scores, axis=1)
        train_scores_std = np.std(train_scores, axis=1)
        test_scores_mean = np.mean(test_scores, axis=1)
        test_scores_std = np.std(test_scores, axis=1)
 
        plot2 = figure.add_subplot(2,1,2)
        plot2.fill_between(train_sizes, train_scores_mean - train_scores_std,
            train_scores_mean + train_scores_std, alpha=0.1, color="r")
        plot2.fill_between(train_sizes, test_scores_mean - test_scores_std,
            test_scores_mean + test_scores_std, alpha=0.1, color="g")
        plot2.plot(train_sizes, train_scores_mean, 'o-',
            color="r", label="Training score")
        plot2.plot(train_sizes, test_scores_mean, 'o-',
            color="g", label="Cross-validation score")
        plot2.legend(loc="best")
        plot2.set_title("Learning curve of " + name, fontsize=12)
        plot2.set_xlabel("fit_times")
        plot2.set_ylabel("Score")



        plot2.grid(True, alpha=0.75, lw=1, ls='-.')
 
        figure.tight_layout()
        canvas.draw()
 
The plot_real_pred_val_learning_curve() method in the Helper_Plot class is
responsible for plotting two visualizations: a diagram comparing true values
versus predicted values and a learning curve. Here's an explanation of the
method:

1. plot_real_pred_val_learning_curve(self, model, X_train, y_train,
X_test, y_test, ypred, name, figure, canvas)

This method takes several arguments:
model: The trained machine learning model to be
evaluated.
X_train: The feature matrix of the training data.
y_train: The target labels of the training data.
X_test: The feature matrix of the testing data.
y_test: The target labels of the testing data.
ypred: The predicted labels obtained from the model on
the test data.
name: A string representing the name or identifier for the
model being evaluated.
figure: A Matplotlib figure object where the visualizations
will be plotted.
canvas: A Matplotlib canvas object associated with the
figure.

2. Inside the method, two subplots are created within the specified
figure. These subplots are used to display the diagram comparing
true values versus predicted values and the learning curve side
by side.

3. For the true values versus predicted values diagram, the method
calculates the accuracy of the model's predictions and adds this
information to the plot title. It then creates scatter plots for both
the predicted values (in blue) and the actual values (in red). The
legend indicates which points represent predicted and actual



values. This diagram helps visualize how well the model's
predictions align with the actual values.

4. For the learning curve, the method uses the learning_curve()
function to calculate the training and cross-validation scores at
different training set sizes. It then plots the learning curve,
including shaded areas representing the standard deviation of
scores. The learning curve helps assess the model's performance
in terms of bias and variance as the training set size increases.

5. The resulting plots for the true values versus predicted values
diagram and the learning curve are displayed in the specified
figure. The canvas.draw() function is called to render and update
the plots within the associated canvas.

These visualizations provide insights into both the model's predictive
performance (through the true values versus predicted values diagram) and
its ability to generalize (through the learning curve).
 
 
Logistic Regression Classifier and Grid Search
In Machine_Learning class, define a new method named
logistic_regression() as follows:
 
 def logistic_regression(self, name, X_train, X_test, y_train, y_test):
 #Logistic Regression Classifier
 # Define the parameter grid for the grid search
        param_grid = {
 'C': [0.01, 0.1, 1, 10],
 'penalty': ['none', 'l2'],
 'solver': ['newton-cg', 'lbfgs', 'liblinear', 'saga'],
        }
 
 # Initialize the Logistic Regression model
        logreg = LogisticRegression(max_iter=5000, random_state=2021)
 
 # Create GridSearchCV with the Logistic Regression model and the
parameter grid



        grid_search = GridSearchCV(logreg, param_grid, cv=3,
scoring='accuracy', n_jobs=-1)
 
 # Train and perform grid search
        grid_search.fit(X_train, y_train)
 
 # Get the best Logistic Regression model from the grid search
        best_model = grid_search.best_estimator_
 
 #Saves model
        joblib.dump(best_model, 'LR_Model.pkl')    
 
 # Print the best hyperparameters found
 print(f"Best Hyperparameters for LR:")
 print(grid_search.best_params_)        
 
 return best_model
 
The logistic_regression() method in the Machine_Learning class is
responsible for training a Logistic Regression classifier using
hyperparameter tuning through grid search. Here's a step-by-step
explanation of the method:

1. Method Arguments:
name: A string representing the name or identifier for the
model being trained (e.g., "Logistic Regression").
X_train: The feature matrix of the training data.
X_test: The feature matrix of the testing data.
y_train: The target labels of the training data.
y_test: The target labels of the testing data.

2. Grid Search for Hyperparameter Tuning:
A parameter grid (param_grid) is defined, specifying a range of
hyperparameters for the Logistic Regression classifier. This includes
different values for the regularization strength (C), penalty type
(penalty), and solver method (solver).

3. Logistic Regression Model Initialization:



A Logistic Regression classifier (logreg) is initialized with some
configuration, including a maximum number of iterations and a
random seed. The max_iter parameter is set to 5000 to ensure that the
solver converges, and random_state is set to 2021 for reproducibility.

4. Grid Search with Cross-Validation:
GridSearchCV is used to perform grid search with cross-validation. It
takes the initialized Logistic Regression model (logreg), the
parameter grid (param_grid), the number of cross-validation folds
(cv=3), the scoring metric (scoring='accuracy'), and the option to
parallelize the search (n_jobs=-1).

5. Training and Model Selection:
The fit() method of the grid search object (grid_search) is called with
the training data (X_train, y_train) to train multiple Logistic
Regression models with different hyperparameter combinations.

6. Best Model Selection:
The best-performing Logistic Regression model with the optimal
hyperparameters is obtained using grid_search.best_estimator_.

7. Model Saving:
The best-performing Logistic Regression model is saved to a pickle
file named 'LR_Model.pkl' using the joblib.dump method. This
allows the model to be reused later without retraining.

8. Printing Best Hyperparameters:
The method prints the best hyperparameters found during the grid
search for the Logistic Regression classifier.

9. Return Value:
The best-performing Logistic Regression model is returned as the
output of the method.

Overall, this method automates the process of hyperparameter tuning for a
Logistic Regression classifier, ensuring that the model is trained with the
best hyperparameters found during the grid search.
 
Then, in Machine_Learning class, define a new method named
implement_LR() as follows:
 
 def implement_LR(self, chosen, X_train, X_test, y_train, y_test):



        file_path = os.getcwd()+"/LR_Model.pkl"
 if os.path.exists(file_path):
            model = joblib.load('LR_Model.pkl')
            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)
 else:
            model = self.logistic_regression(chosen, X_train, X_test, y_train,
y_test)
            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)
 
 #Saves result into excel file
 self.obj_data.save_result(y_test, y_pred, "results_LR.csv")
 
 print("Training Logistic Regression done...")
 return model, y_pred
 
The implement_LR() method in the Machine_Learning class is responsible
for implementing the Logistic Regression classifier for a given dataset and
chosen category (target variable). Here's a step-by-step explanation of the
method:

1. Method Arguments:
chosen: A string representing the chosen category or target
variable.
X_train: The feature matrix of the training data.
X_test: The feature matrix of the testing data.
y_train: The target labels of the training data.
y_test: The target labels of the testing data.

2. Checking for Pre-trained Model:
The method checks if a pre-trained Logistic Regression model exists
in the current working directory. This is done by constructing the file
path to 'LR_Model.pkl' and using os.path.exists(file_path).

3. Model Loading or Training:
If a pre-trained model exists, it is loaded using
joblib.load('LR_Model.pkl'). Otherwise, the



logistic_regression method is called to train a new Logistic
Regression model with hyperparameter tuning.
Whether the model is loaded or trained, it is stored in the
model variable.

 
4. Model Evaluation and Prediction:

The run_model() method is called to evaluate the model's
performance on the testing data (X_test, y_test). The proba
parameter is set to True, indicating that probability scores
for class predictions should be computed.
The predicted class probabilities or labels are stored in the
y_pred variable.

5. Saving Model Results:
The method uses the save_result() method from the Process_Data
class (self.obj_data) to save the model's results, including actual and
predicted labels, into an Excel file named 'results_LR.csv'.

6. Printing Status:
A message is printed to indicate that the training or loading of the
Logistic Regression model is complete.

7. Return Value:
The trained or loaded Logistic Regression model (model) and the
predicted class probabilities or labels (y_pred) are returned as output.

Overall, this method allows you to either load a pre-trained Logistic
Regression model or train a new one based on the chosen category, and then
evaluates its performance on the testing data while saving the results for
further analysis.
 
Then, in Helper_Plot class, define a new method named choose_plot_ML()
method as follows:
 
 def choose_plot_ML(self, root, chosen, X_train, X_test, y_train, y_test, 
figure1, canvas1, figure2, canvas2):  
 if chosen == "Logistic Regression":



            best_model, y_pred = self.obj_ml.implement_LR(chosen, X_train,
X_test, y_train, y_test)
 
 #Plots confusion matrix and ROC
 self.plot_cm_roc(best_model, X_test, y_test, y_pred, chosen, figure1,
canvas1)
 
 #Plots true values versus predicted values diagram and learning curve
 self.plot_real_pred_val_learning_curve(best_model, X_train, y_train,
                X_test, y_test, y_pred, chosen, figure2, canvas2)
 
 #Shows table of result
            df_lr = self.obj_data.read_dataset("results_LR.csv")
 self.shows_table(root, df_lr, 450, 750, "Y_test and Y_pred of Logistic
Regression")
 
The choose_plot_ML() method is responsible for selecting and displaying
specific plots and visualizations related to a chosen machine learning
algorithm. Below is a breakdown of how this method works:

1. Method Arguments:
root: The root Tkinter window where the plots and tables
will be displayed.
chosen: A string representing the chosen machine learning
algorithm.
X_train: The feature matrix of the training data.
X_test: The feature matrix of the testing data.
y_train: The target labels of the training data.
y_test: The target labels of the testing data.
figure1: A Matplotlib figure object for the first set of plots.
canvas1: A Matplotlib canvas object associated with
figure1.
figure2: A Matplotlib figure object for the second set of
plots.
canvas2: A Matplotlib canvas object associated with
figure2.

2. Conditional Block Based on the Chosen Algorithm:



The method checks the value of the chosen variable to determine
which machine learning algorithm has been selected.

3. Logistic Regression (Chosen Algorithm):
If the chosen algorithm is "Logistic Regression," the
implement_LR method from the Machine_Learning class
is called to either load a pre-trained model or train a new
one, based on whether a model file exists.
The following visualizations and actions are performed for
Logistic Regression:

Confusion matrix and ROC curve are plotted using
plot_cm_roc().
A diagram showing true values versus predicted values
and a learning curve is plotted using
plot_real_pred_val_learning_curve().
The results, including actual and predicted labels, are
read from a CSV file and displayed in a table using
shows_table().

4. Displaying the Visualizations:
The visualizations and tables generated for the selected machine
learning algorithm are displayed within the Tkinter root window
(root) for the user to interact with.

Overall, this method provides a modular and organized way to select a
machine learning algorithm, train or load the model, and display relevant
visualizations and result tables based on the chosen algorithm. It promotes
clarity and ease of use when analyzing machine learning model
performance.
 
Then, in Main_Class, define a new method named train_ML() as follows:
 
 def train_ML(self):
        file_path = os.getcwd()+"/X_train.pkl"
 if os.path.exists(file_path):
 self.X_train, self.X_test, self.y_train, self.y_test = self.obj_ML.load_files()
 else:
 self.obj_ML.oversampling_splitting(self.X, self.y)



 self.X_train, self.X_test, self.y_train, self.y_test = self.obj_ML.load_files()
 
 print("Loading files done...")
 
 #turns on combo4 and combo5 after splitting is done
 self.obj_window.combo4['state'] = 'normal'
 self.obj_window.combo5['state'] = 'normal'
 
 self.obj_window.button2.config(state="disabled")
 
The train_ML() method serves the purpose of preparing the data for
machine learning, which includes loading or generating the training and
testing datasets. Below is a detailed explanation of this method's
functionality:

1. Checking for Existing Data Files:
The method first checks if the data files (X_train.pkl, X_test.pkl,
y_train.pkl, and y_test.pkl) already exist in the current working
directory. These files typically store preprocessed and split data to
avoid the need for repeated data preprocessing.

2. File Existence Check:
If the data files exist (os.path.exists(file_path) is True), the
method loads the training and testing datasets using the
load_files() method from the Machine_Learning class.
If the data files do not exist, the method proceeds to the
data preparation steps below.

3. Data Oversampling and Splitting (If Files Do Not Exist):
If the data files do not exist, the method calls the
oversampling_splitting() method from the
Machine_Learning class. This method performs the
following steps:

Applies Synthetic Minority Over-sampling Technique
(SMOTE) to handle class imbalance, generating
synthetic samples to balance the classes.
Splits the data into training and testing sets using a 80-
20 split ratio.



Applies Standard Scaling to the features to ensure that
they have similar scales.

4. Loading Files and Enabling Combo Boxes:
After data preparation is complete, the method loads the
training and testing datasets using the load_files method.
It then sets the state of two combo boxes (combo4 and
combo5) to 'normal,' enabling user interaction with these
combo boxes.
Finally, it disables button2 to prevent further data splitting,
as the data is already prepared.

Overall, the train_ML() method ensures that the necessary training and
testing datasets are available for machine learning tasks. If the data files
already exist, it loads them, and if not, it generates and saves them before
enabling interaction with certain combo boxes and disabling further data
splitting to maintain data consistency for machine learning.
 
Next, in Main_Class, define a new method named choose_combobox4() as
follows:
 
 def choose_combobox4(self, event):
        chosen = self.obj_window.combo4.get()
 self.obj_plot.choose_plot_ML(self.root, chosen, self.X_train, self.X_test,
 self.y_train, self.y_test, self.obj_window.figure1,
 self.obj_window.canvas1, self.obj_window.figure2,
 self.obj_window.canvas2)   
 
The choose_combobox4 method is responsible for handling user
interactions with the fourth combo box (combo4) in your application's
graphical user interface (GUI). This method is triggered when an item is
selected from combo4. Here's an explanation of its purpose and
functionality:

1. Event Binding:
This method is bound to the "<<ComboboxSelected>>" event of
combo4 using the bind method. This means that whenever the user



selects an item from combo4, this method will be automatically
executed in response to the event.

2. Event Handling:
When an item is selected from combo4, the event parameter contains
information about the event, although it's not used in this method.

3. Retrieving the Chosen Option:
The method retrieves the selected option from combo4 using the get
method. This option is stored in the chosen variable, representing the
user's choice.

4. Invoking choose_plot_ML() Method:
The chosen option, along with other necessary data (training and
testing datasets, figure objects, and canvas objects), is passed as
arguments to the choose_plot_ML() method of the obj_plot object.
This method is responsible for displaying specific machine learning-
related plots and results based on the user's choice.

In summary, the choose_combobox4() method is a callback function that
responds to user selections in combo4. It retrieves the user's choice and
triggers the appropriate actions for displaying machine learning-related
plots and results based on that choice.
 
Finally, add this code to the end of binds_event() method in Main_Class:
 
 #Binds button2 to train_ML() function
 self.obj_window.button2.config(command=self.train_ML)
 
 # Binds combobox4 to a function
 self.obj_window.combo4.bind("<<ComboboxSelected>>",
self.choose_combobox4)
 
These lines of code are responsible for setting up event bindings for user
interactions with the GUI elements in your application:

1. Binding Button to Function:
self.obj_window.button2.config(command=self.train_ML) binds the
command property of button2 to the train_ML function. This means



that when the user clicks on button2, the train_ML function will be
executed.

2. Binding Combo Box to Function:
self.obj_window.combo4.bind("<<ComboboxSelected>>",
self.choose_combobox4) binds the "<<ComboboxSelected>>" event
of combo4 to the choose_combobox4 function. When the user selects
an item from combo4, the choose_combobox4 function will be called
to handle the event.

In summary, these lines of code establish event bindings to ensure that the
specified functions are executed in response to user actions. When button2
is clicked, train_ML() will be invoked, and when an item is selected from
combo4, choose_combobox4() will handle the event, allowing the
application to respond to user interactions.
 
Run main_class.py. Next, click on SPLIT DATA button. Then, choose
Logistic Regression to see the result of using Logistic Regression as shown
in figure 31.
 

Figure 31 The result of using Logistic Regression
 
 
 
 



Output:
Logistic Regression
accuracy:  0.9239842726081258
recall:  0.9239842726081258
precision:  0.9273706721853352
f1:  0.9238285627366127
              precision    recall  f1-score   support
 
           0       0.89      0.97      0.93       382
           1       0.97      0.88      0.92       381
 
    accuracy                           0.92       763
   macro avg       0.93      0.92      0.92       763
weighted avg       0.93      0.92      0.92       763
 
The analysis of the results for Logistic Regression shows the following
performance metrics:

Accuracy: The model achieved an accuracy of approximately
92.40%, indicating that it correctly predicted the class labels for
about 92.40% of the samples in the test dataset.
Recall: The recall score, which measures the model's ability to
correctly identify positive samples (responsiveness), is also
approximately 92.40%. This indicates that the model effectively
identified about 92.40% of the responsive customers.
Precision: The precision score, which measures the model's
ability to avoid false positives, is approximately 92.74%. This
suggests that when the model predicts a customer as responsive,
it is correct about 92.74% of the time.
F1-Score: The F1-score, which is the harmonic mean of
precision and recall, is approximately 92.38%. It provides a
balance between precision and recall, indicating the overall
effectiveness of the model.
Support: The support values represent the number of samples in
each class. In this case, there are 382 samples in class 0 and 381
samples in class 1.



The classification report provides a detailed breakdown of these metrics for
both class 0 and class 1. For class 0, the model has a slightly lower recall
(0.88), indicating that it is slightly less effective at identifying non-
responsive customers. However, for class 1, the recall is high (0.97),
indicating strong performance in identifying responsive customers. Overall,
the model performs well with balanced precision and recall, resulting in a
high F1-score.
 
In conclusion, the Logistic Regression model appears to be effective in
predicting customer responsiveness, achieving a good balance between
precision and recall, and providing high overall accuracy. However, it's
essential to consider the specific business requirements and the
consequences of false positives and false negatives when evaluating the
model's performance in a real-world context.
 
 
Random Forest Classifier and Grid Search
In Machine_Learning class, define a new method named random_forest() as
follows:
 
 def random_forest(self, name, X_train, X_test, y_train, y_test):
 #Random Forest Classifier    
 # Define the parameter grid for the grid search
        param_grid = {
 'n_estimators': [100, 200, 300],
 'max_depth': [10, 20, 30, 40, 50],
 'min_samples_split': [2, 5, 10],
 'min_samples_leaf': [1, 2, 4]
        }
 
 # Initialize the RandomForestClassifier model
        rf = RandomForestClassifier(random_state=2021)
 
 # Create GridSearchCV with the RandomForestClassifier model and the
parameter grid



        grid_search = GridSearchCV(rf, param_grid, cv=3, scoring='accuracy',
n_jobs=-1)
 
 # Train and perform grid search
        grid_search.fit(X_train, y_train)
 
 # Get the best RandomForestClassifier model from the grid search
        best_model = grid_search.best_estimator_
 
 #Saves model
        joblib.dump(best_model, 'RF_Model.pkl')    
 
 # Print the best hyperparameters found
 print(f"Best Hyperparameters for RF:")
 print(grid_search.best_params_)        
 
 return best_model
 
The random_forest() function in the code is responsible for training a
Random Forest Classifier and optimizing its hyperparameters using grid
search. Here's a step-by-step explanation of what this function does:

1. Parameter Grid Definition: It defines a parameter grid
(param_grid) that contains various hyperparameters for the
Random Forest Classifier. These hyperparameters include:

n_estimators: The number of trees in the forest.
max_depth: The maximum depth of each tree.
min_samples_split: The minimum number of samples
required to split an internal node.
min_samples_leaf: The minimum number of samples
required to be at a leaf node.

2. Model Initialization: It initializes a Random Forest Classifier (rf)
with a specified random seed for reproducibility.

3. Grid Search: It creates a GridSearchCV object (grid_search) that
takes the rf model and the param_grid. It performs a grid search
with cross-validation (3-fold cross-validation) to find the best



combination of hyperparameters that maximizes the accuracy
score.

4. Grid Search Training: It fits the grid_search object to the training
data (X_train and y_train) to find the best hyperparameters.

5. Best Model Selection: After the grid search, it retrieves the best
Random Forest model (best_model) based on the
hyperparameters that yielded the highest accuracy during cross-
validation.

6. Model Saving: It saves the best_model to a file named
'RF_Model.pkl' using the joblib library. This allows for later
retrieval and use of the trained model without retraining.

7. Print Best Hyperparameters: It prints the best hyperparameters
found during the grid search for reference.

In summary, this function automates the process of hyperparameter tuning
for a Random Forest Classifier by conducting a grid search over a
predefined parameter space, ultimately returning the best-performing model
based on the specified hyperparameters. This optimized model can then be
used for making predictions on new data.
 
Then, in Machine_Learning class, define a new method named
implement_RF() as follows:
 
 def implement_RF(self, chosen, X_train, X_test, y_train, y_test):
        file_path = os.getcwd()+"/RF_Model.pkl"
 if os.path.exists(file_path):
            model = joblib.load('RF_Model.pkl')
            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)
 else:
            model = self.random_forest(chosen, X_train, X_test, y_train, y_test)
            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)
 
 #Saves result into excel file
 self.obj_data.save_result(y_test, y_pred, "results_RF.csv")



 
 print("Training Random Forest done...")
 return model, y_pred
 
The implement_RF() function in the code is responsible for implementing
and training a Random Forest Classifier for a chosen task. Here's a step-by-
step explanation of what this function does:

1. Checking for Pretrained Model: It first checks if a pretrained
Random Forest model exists in the file system (RF_Model.pkl).
If a pretrained model is found, it loads the model from the file.
This step is intended to avoid retraining the model if it has
already been trained and saved.

2. Model Training: If no pretrained model is found, it calls the
random_forest function to perform the training. The
random_forest function trains a Random Forest Classifier using
grid search to optimize hyperparameters.

3. Predictions: After either loading a pretrained model or training a
new one, it uses the trained model to make predictions on the test
data (X_test).

4. Saving Results: It saves the true labels (y_test) and the predicted
labels (y_pred) into an Excel file named 'results_RF.csv' using
the save_result function. This file can be used for further
analysis and evaluation of the model's performance.

5. Printing Status: It prints a message to indicate that the training of
the Random Forest model is complete.

6. Returning Model and Predictions: Finally, it returns both the
trained Random Forest model and the predicted labels (y_pred)
for potential further analysis or use.

In summary, this function handles the training, prediction, and result storage
for a Random Forest Classifier, ensuring that the model is only trained if no
pretrained model is available. This allows for efficient model reuse and
results tracking.
 
Add this code to the end of choose_plot_ML() method in Helper_Plot class:
 



 if chosen == "Random Forest":
            best_model, y_pred = self.obj_ml.implement_RF(chosen, X_train,
X_test, y_train, y_test)
 
 #Plots confusion matrix and ROC
 self.plot_cm_roc(best_model, X_test, y_test, y_pred, chosen, figure1,
canvas1)
 
 #Plots true values versus predicted values diagram and learning curve
 self.plot_real_pred_val_learning_curve(best_model, X_train, y_train,
                X_test, y_test, y_pred, chosen, figure2, canvas2)
 
 #Shows table of result
            df_lr = self.obj_data.read_dataset("results_RF.csv")
 self.shows_table(root, df_lr, 450, 750, "Y_test and Y_pred of Random
Forest")  
 
The code is for implementing and evaluating machine learning models,
specifically the Random Forest Classifier. Here's an explanation of what
this code block does:

1. Model Implementation: The code block checks if the chosen
model is "Random Forest." If it is, it proceeds to implement and
train the Random Forest model by calling the implement_RF
method from the obj_ml object (which is an instance of a
machine learning class).

2. Model Evaluation: After implementing and training the Random
Forest model, it proceeds to evaluate the model's performance. It
does this in three steps:

3. Confusion Matrix and ROC: It calls the plot_cm_roc() method to
generate and display a confusion matrix and ROC curve for the
model's predictions on the test data. These visualizations help
assess the model's classification performance.

4. True vs. Predicted Values: It calls the
plot_real_pred_val_learning_curve() method to create a scatter
plot of true values vs. predicted values and a learning curve.
These visualizations provide insights into how well the model's



predictions align with the actual values and its learning progress
over time.

5. Result Table Display: It displays a table of results by calling the
shows_table() method. The table contains metrics and statistics
related to the model's performance on the test data, such as
accuracy, precision, recall, and F1-score. The table displays
these metrics for further analysis.

Overall, this code block is responsible for implementing, evaluating, and
visualizing the performance of a Random Forest Classifier model. It offers
insights into how well the model is classifying data and provides
visualizations and metrics to assess its effectiveness.
 
Run main_class.py. Next, click on SPLIT DATA button. Then, choose
Random Forest to see the result of using Random Forest as shown in figure
32.
 

Figure 32 The results of using Random Forest classifier
 
Output:
Random Forest
accuracy:  0.9161205766710354
recall:  0.9161205766710354
precision:  0.9166857031775766



f1:  0.916094346335905
              precision    recall  f1-score   support
 
           0       0.93      0.90      0.91       382
           1       0.90      0.93      0.92       381
 
    accuracy                           0.92       763
   macro avg       0.92      0.92      0.92       763
weighted avg       0.92      0.92      0.92       763
 
The output is the evaluation results of a Random Forest Classifier model.
Here's an analysis of the output:

1. Model Name: "Random Forest" indicates that the Random
Forest Classifier was used for this analysis.

2. Accuracy: The model achieved an accuracy of approximately
91.61%. Accuracy is the ratio of correctly predicted instances to
the total number of instances in the test dataset. In this case, it
suggests that the model correctly classified about 91.61% of the
samples.

3. Recall: The recall score, also known as sensitivity or true
positive rate, is approximately 91.61%. It measures the
proportion of actual positive samples that were correctly
classified by the model. This indicates that the model was able to
capture about 91.61% of the positive cases.

4. Precision: The precision score is approximately 91.67%.
Precision measures the proportion of true positive predictions
out of all positive predictions made by the model. This suggests
that when the model predicts a positive outcome, it is correct
about 91.67% of the time.

5. F1-Score: The F1-score is approximately 91.61%. The F1-score
is the harmonic mean of precision and recall and provides a
balance between these two metrics. It indicates that the model
has a good balance between precision and recall.

6. Confusion Matrix: The confusion matrix provides more detailed
information about the model's performance. It shows the number
of true positives, true negatives, false positives, and false



negatives. In this case, it suggests that the model correctly
classified a substantial number of both positive and negative
samples.

7. Classification Report: The classification report provides a
summary of various classification metrics, including precision,
recall, and F1-score, for both the "0" (Not Responsive) and "1"
(Responsive) classes. It also includes metrics for the macro-
average and weighted-average. The weighted average is often
more important, especially in imbalanced datasets.

Overall, based on these results, the Random Forest Classifier appears to be
performing well in classifying data, with balanced precision and recall
scores. However, it's essential to consider the specific context and
requirements of the application to determine if this level of performance is
satisfactory.
K-Nearest Neighbors Classifier and Grid Search
In Machine_Learning class, define a new method named
knearest_neighbors() as follows:
 
 def knearest_neigbors(self, name, X_train, X_test, y_train, y_test):
 #KNN Classifier
 # Define the parameter grid for the grid search
        param_grid = {
 'n_neighbors': list(range(2, 10))
        }
 
 # Initialize the KNN Classifier
        knn = KNeighborsClassifier()
 
 # Create GridSearchCV with the KNN model and the parameter grid
        grid_search = GridSearchCV(knn, param_grid, cv=3,
scoring='accuracy', n_jobs=-1)
 
 # Train and perform grid search
        grid_search.fit(X_train, y_train)
 



 # Get the best KNN model from the grid search
        best_model = grid_search.best_estimator_
 
 #Saves model
        joblib.dump(best_model, 'KNN_Model.pkl')    
 
 # Print the best hyperparameters found
 print(f"Best Hyperparameters for KNN:")
 print(grid_search.best_params_)        
 



 return best_model
 
The code defines a function called knearest_neigbors(), which is
responsible for training and optimizing a K-Nearest Neighbors (KNN)
classifier model. Here's an explanation of the code:

1. Function Definition: This function, named knearest_neigbors(),
takes several parameters:

name: A string representing the name or identifier of the model.
X_train: The feature matrix of the training data.
X_test: The feature matrix of the testing data.
y_train: The target labels of the training data.
y_test: The target labels of the testing data.

2. Parameter Grid: A parameter grid named param_grid is defined.
It specifies the hyperparameter values that will be tuned during
the grid search. In this case, it focuses on the hyperparameter
n_neighbors, which controls the number of neighbors considered
when making predictions.

3. K-Nearest Neighbors (KNN) Initialization: An instance of the
KNN classifier is created and assigned to the variable knn.

4. GridSearchCV: The GridSearchCV class is used for
hyperparameter tuning. It performs an exhaustive search over the
specified hyperparameter grid. The parameters for
GridSearchCV include:

estimator: The machine learning model to be optimized (in
this case, knn).
param_grid: The grid of hyperparameters to search.
cv: The number of cross-validation folds (in this case, 3-
fold cross-validation).
scoring: The evaluation metric used for optimization (in
this case, 'accuracy').
n_jobs: The number of CPU cores to use for parallel
computation (in this case, '-1' for maximum available
cores).

5. Grid Search: The GridSearchCV object (grid_search) is fitted to
the training data (X_train and y_train) to find the best
combination of hyperparameters for the KNN model.



6. Best Model Selection: The best KNN model obtained from the
grid search is stored in the best_model variable.

7. Model Saving: The best KNN model is saved to a file named
'KNN_Model.pkl' using the joblib.dump function. This allows
the model to be reused without the need for retraining.

8. Print Hyperparameters: The hyperparameters of the best KNN
model found during the grid search are printed to the console for
reference.

In summary, this function automates the process of hyperparameter tuning
for a KNN classifier using grid search. It finds the best set of
hyperparameters for the KNN model and saves the optimized model for
later use. This is a common practice in machine learning to ensure that the
model performs optimally on the given dataset.
 
 
Then, in Machine_Learning class, define a new method named
implement_KNN():
 
 def implement_KNN(self, chosen, X_train, X_test, y_train, y_test):
        file_path = os.getcwd()+"/KNN_Model.pkl"
 if os.path.exists(file_path):
            model = joblib.load('KNN_Model.pkl')
            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)
 else:
            model = self.knearest_neigbors(chosen, X_train, X_test, y_train,
y_test)
            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)
 
 #Saves result into excel file
 self.obj_data.save_result(y_test, y_pred, "results_KNN.csv")
 
 print("Training KNN done...")
 return model, y_pred



 
The code defines a function called implement_KNN() that is responsible for
implementing and training a K-Nearest Neighbors (KNN) classifier, as well
as saving and evaluating the results. Here's an explanation of the code:

1. Function Definition: This function, named implement_KNN,
takes several parameters:

chosen: A string representing the name or identifier of the
chosen model (in this case, "K-Nearest Neighbors").
X_train: The feature matrix of the training data.
X_test: The feature matrix of the testing data.
y_train: The target labels of the training data.
y_test: The target labels of the testing data.

2. File Path Check: It checks whether a file named
'KNN_Model.pkl' exists in the current working directory
(os.getcwd()). This file is used to store the trained KNN model.

3. Model Loading or Training: If the 'KNN_Model.pkl' file exists,
it means that a trained KNN model is available, so the code loads
this model using joblib.load. If the file doesn't exist, it indicates
that the model needs to be trained. In this case, the code calls the
knearest_neigbors() function to train and optimize the KNN
model.

4. Model Prediction: After loading or training the KNN model, the
function calls the run_model function to make predictions on the
test data (X_test) using the model. The proba parameter is set to
True, indicating that the function should return predicted
probabilities.

5. Result Saving: The actual target labels (y_test) and the predicted
labels/probabilities (y_pred) are used to save the results into an
Excel file named 'results_KNN.csv' using the save_result
function provided by obj_data. This file typically contains the
model's predictions and the ground truth labels for later analysis.

6. Print Status: A message is printed to the console to indicate that
the training or loading of the KNN model is complete.

In summary, this function serves as a unified interface for implementing the
KNN model. It checks if a trained model is available, loads it if found, and



otherwise trains a new model. After making predictions, it saves the results
to an Excel file and provides a status message. This approach allows for the
reuse of pre-trained models and simplifies the process of running and
evaluating the KNN classifier.
 
Then, in Helper_Plot class, add this code to the end of choose_plot_ML()
method:
 
 if chosen == "K-Nearest Neighbors":
            best_model, y_pred = self.obj_ml.implement_KNN(chosen,
X_train, X_test, y_train, y_test)
 
 #Plots confusion matrix and ROC
 self.plot_cm_roc(best_model, X_test, y_test, y_pred, chosen, figure1,
canvas1)
 
 #Plots true values versus predicted values diagram and learning curve
 self.plot_real_pred_val_learning_curve(best_model, X_train, y_train,
                X_test, y_test, y_pred, chosen, figure2, canvas2)
 
 #Shows table of result
            df_lr = self.obj_data.read_dataset("results_KNN.csv")
 self.shows_table(root, df_lr, 450, 750, "Y_test and Y_pred of KNN")  
 
The code is responsible for executing the K-Nearest Neighbors (KNN)
classifier, evaluating its performance, and displaying the results. Let's break
down this code snippet step by step:

1. Condition Checking: The code begins with an if statement that
checks if the value of the variable chosen is equal to the string
"K-Nearest Neighbors." This condition is used to determine
whether the KNN classifier should be executed.

2. KNN Implementation and Evaluation: If the condition is met
(i.e., chosen is "K-Nearest Neighbors"), the following actions are
performed:

The code calls the implement_KNN() method of the
obj_ml object, passing in the chosen, X_train, X_test,



y_train, and y_test as arguments. This method is
responsible for training or loading the KNN model and
making predictions.
After obtaining the trained model and predictions (y_pred),
the code proceeds to evaluate the model's performance.

3. Performance Visualization and Reporting:
The code calls the plot_cm_roc() method to generate two
plots: a confusion matrix and a Receiver Operating
Characteristic (ROC) curve. These plots provide insights
into the model's classification performance and its ability
to distinguish between classes.
Next, it calls the plot_real_pred_val_learning_curve()
method to create two additional plots:

A scatter plot showing the true values versus predicted
values, which visually compares the model's
predictions to the actual target values.
A learning curve, which illustrates how the model's
performance changes as the training dataset size
increases. This curve helps assess the model's bias-
variance trade-off.

Finally, the code reads the results of the KNN model's
predictions from an Excel file named "results_KNN.csv"
using the read_dataset() method provided by obj_data. The
data from this file includes the model's predictions and the
true labels.

4. Table Display: The code displays a table of results using the
shows_table method. This table presumably shows the actual and
predicted values, allowing for a detailed analysis of the model's
performance.

 
In conclusion, this code serves the purpose of implementing, evaluating,
and visualizing the performance of a K-Nearest Neighbors classifier. It
generates various plots and displays a table of results, providing insights
into how well the model performs on the given dataset.
 



Run main_class.py. Next, click on SPLIT DATA button. Then, choose K-
Nearest Neighbors to see the result of using K-Nearest Neighbors as shown
in figure 33.
 

Figure 33 The results of using K-Nearest Neighbors classifier
 
Output:
K-Nearest Neighbors
accuracy:  0.8689384010484927
recall:  0.8689384010484927
precision:  0.8706714584974559
f1:  0.8687919116352781
              precision    recall  f1-score   support
 
           0       0.90      0.84      0.86       382
           1       0.85      0.90      0.87       381
 
    accuracy                           0.87       763
   macro avg       0.87      0.87      0.87       763
weighted avg       0.87      0.87      0.87       763
 
The output represents the performance metrics and evaluation results of the
K-Nearest Neighbors (KNN) classifier on a dataset. Let's analyze and
conclude based on the output:



1. Classifier Information:
Classifier Name: K-Nearest Neighbors
Number of Samples: 763 (presumably the test dataset size)

2. Performance Metrics:
Accuracy: The accuracy of the KNN classifier is
approximately 0.869, which means that it correctly
classified around 86.9% of the samples in the test dataset.
Recall: The recall score is also approximately 0.869,
indicating that the model correctly identified around 86.9%
of the positive (class 1) samples. This metric measures the
model's ability to find all relevant instances of the positive
class.
Precision: The precision score is approximately 0.871,
which means that when the model predicts the positive
class, it is correct about 87.1% of the time. This metric
assesses the accuracy of the model's positive class
predictions.
F1-Score: The F1-score is approximately 0.869, which is
the harmonic mean of precision and recall. It provides a
balance between precision and recall, making it useful for
imbalanced datasets.

3. Confusion Matrix:
The confusion matrix shows the following:
For the "0" class (presumably the negative class):

Precision: 0.90 (90% of predicted negatives were
correct)
Recall: 0.84 (84% of actual negatives were correctly
predicted)
F1-Score: 0.86 (a balance between precision and
recall)

For the "1" class (presumably the positive class):
Precision: 0.85 (85% of predicted positives were
correct)
Recall: 0.90 (90% of actual positives were correctly
predicted)



F1-Score: 0.87 (a balance between precision and
recall)

4. Summary:
The KNN classifier performs reasonably well on the
dataset, with accuracy, recall, and precision scores around
87%. This suggests that the model is effective at
distinguishing between the two classes.
The F1-scores for both classes are also similar, indicating a
good balance between precision and recall for both
positive and negative classes.
The model appears to have slightly better performance for
the "0" class in terms of precision, while it has slightly
better performance for the "1" class in terms of recall.

Overall, based on the output, the K-Nearest Neighbors classifier
demonstrates a satisfactory level of performance in classifying the dataset,
with balanced results for both positive and negative classes. However, the
specific context and requirements of the application should be considered
when interpreting these results.
 
 
Decision Trees Classifier and Grid Search
In Machine_Learning class, define a new method named decision_trees() as
follows:
 
 def decision_trees(self, name, X_train, X_test, y_train, y_test):
 # Initialize the DecisionTreeClassifier model
        dt_clf = DecisionTreeClassifier(random_state=2021)
 
 # Define the parameter grid for the grid search
        param_grid = {
 'max_depth': np.arange(1, 51, 1),
 'criterion': ['gini', 'entropy'],
 'min_samples_split': [2, 5, 10],
 'min_samples_leaf': [1, 2, 4],
        }



 
 # Create GridSearchCV with the DecisionTreeClassifier model and the
parameter grid
        grid_search = GridSearchCV(dt_clf, param_grid, cv=3,
scoring='accuracy', n_jobs=-1)
 
 # Train and perform grid search
        grid_search.fit(X_train, y_train)
 
 # Get the best DecisionTreeClassifier model from the grid search
        best_model = grid_search.best_estimator_
 
 #Saves model
        joblib.dump(best_model, 'DT_Model.pkl')    
 
 # Print the best hyperparameters found
 print(f"Best Hyperparameters for DT:")
 print(grid_search.best_params_)        
 
 return best_model
 
The code defines a function called decision_trees() that trains and tunes a
Decision Tree classifier using grid search for hyperparameter optimization.
Let's break down the function's components and purpose:

1. Function Arguments:
name: A string representing the name or identifier of the
classifier (used for display or documentation purposes).
X_train, X_test, y_train, y_test: The training and testing
data split, typically feature matrices (X_train and X_test)
and target vectors (y_train and y_test).

2. Decision Tree Classifier Initialization:
The function initializes a DecisionTreeClassifier with a specified
random seed (random_state=2021).

3. Parameter Grid for Grid Search:
A parameter grid (param_grid) is defined as a dictionary that includes
various hyperparameters of the Decision Tree classifier:



max_depth: A range of maximum depths for the tree.
criterion: Two possible criteria for splitting nodes, either
'gini' or 'entropy'.
min_samples_split: Minimum number of samples required
to split an internal node.
min_samples_leaf: Minimum number of samples required
to be at a leaf node.

4. Grid Search Cross-Validation:
The function utilizes GridSearchCV to perform
hyperparameter tuning using cross-validation (cv=3).
GridSearchCV aims to find the combination of
hyperparameters that yields the highest accuracy score on
the training data.
The search is conducted over the specified hyperparameter
grid, considering different combinations of hyperparameter
values.
The scoring metric used for evaluation is accuracy
('accuracy').

5. Best Model Selection:
After completing the grid search, the function selects the
best DecisionTreeClassifier model based on the
hyperparameters that produced the highest accuracy during
cross-validation.
The best model is stored in the variable best_model.

6. Model Saving:
The best DecisionTreeClassifier model is serialized and saved to a file
named 'DT_Model.pkl' using the joblib library. This allows the model
to be reused or deployed in the future without retraining.

7. Printing Best Hyperparameters:
The function prints the best hyperparameters found during the grid
search, providing insight into the selected hyperparameter values.

The purpose of this function is to automate the process of training and
hyperparameter tuning for a Decision Tree classifier. By conducting a grid
search over a range of hyperparameters, the function helps identify the best-
performing model configuration. This tuned model can then be used for



classification tasks, potentially improving accuracy and predictive
performance compared to default parameter settings.
 
Then, in Machine_Learning class, define a new method named
implement_DT():
 
 def implement_DT(self, chosen, X_train, X_test, y_train, y_test):
        file_path = os.getcwd()+"/DT_Model.pkl"
 if os.path.exists(file_path):
            model = joblib.load('DT_Model.pkl')
            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)
 else:
            model = self.decision_trees(chosen, X_train, X_test, y_train, y_test)
            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)
 
 #Saves result into excel file
 self.obj_data.save_result(y_test, y_pred, "results_DT.csv")
 
 print("Training Decision Trees done...")
 return model, y_pred
 
The implement_DT() function is responsible for training and using a
Decision Tree classifier for a binary classification task. Let's analyze its
components and functionality:

1. Function Arguments:
chosen: A string representing the chosen classification
model or identifier.
X_train, X_test, y_train, y_test: The training and testing
data split, consisting of feature matrices (X_train and
X_test) and target vectors (y_train and y_test).

2. File Path Check:
The function checks if a file named 'DT_Model.pkl' exists in the
current working directory (os.getcwd()). This file is assumed to
contain a pre-trained Decision Tree model.



3. Model Loading or Training:
If the 'DT_Model.pkl' file exists, the function loads the
pre-trained model using joblib (joblib.load). Otherwise, it
proceeds to train a Decision Tree classifier by calling the
decision_trees() function.
The result of this process is the trained model, stored in the
variable model.

4. Model Prediction:
The function uses the trained model to make predictions
on the testing data (X_test) by calling the run_model()
function with proba=True.
The predicted labels or probabilities are stored in the
variable y_pred.

5. Saving Results:
The true labels (y_test) and predicted labels (y_pred) are saved into
an Excel file named "results_DT.csv" using the save_result method of
the obj_data object.

6. Print Confirmation:
A message is printed to indicate that the training of Decision Trees is
complete.

7. Returning Model and Predictions:
The trained model (model) and the corresponding predictions
(y_pred) are returned from the function.

The purpose of this function is to provide a unified interface for training
and using a Decision Tree classifier. If a pre-trained model is available, it
can be loaded and used for predictions. Otherwise, a new model is trained
using the provided training data. The function then saves the results and
returns the model and predictions for further analysis or evaluation.
 
The model's performance can be assessed using various evaluation metrics,
such as accuracy, precision, recall, and F1-score, which can be computed
based on y_test (true labels) and y_pred (predicted labels).
 
Then, in Helper_Plot class, add this code to the end of choose_plot_ML()
method:



 
 if chosen == "Decision Trees":
            best_model, y_pred = self.obj_ml.implement_DT(chosen, X_train,
X_test, y_train, y_test)
 
 #Plots confusion matrix and ROC
 self.plot_cm_roc(best_model, X_test, y_test, y_pred, chosen, figure1,
canvas1)
 
 #Plots true values versus predicted values diagram and learning curve
 self.plot_real_pred_val_learning_curve(best_model, X_train, y_train,
                X_test, y_test, y_pred, chosen, figure2, canvas2)
 
 #Shows table of result
            df_lr = self.obj_data.read_dataset("results_DT.csv")
 self.shows_table(root, df_lr, 450, 750, "Y_test and Y_pred of Decision
Trees")
 
The code block is a conditional statement that checks if the chosen machine
learning model is "Decision Trees." If it is, it executes a series of actions
related to training, evaluating, and displaying the results of a Decision Tree
classifier. Let's break down each part of the code:

1. Condition Check:
The code checks if the value of the variable chosen (representing the
chosen machine learning model) is equal to the string "Decision
Trees."

2. Model Training and Prediction:
If the condition is met (i.e., the chosen model is Decision Trees), it
calls the implement_DT() function to train and obtain predictions
from a Decision Tree classifier. The function returns two values:
best_model (the trained model) and y_pred (the model's predictions
on the test data).

3. Visualization and Evaluation:
After obtaining the trained model and predictions, the code proceeds
to perform the following actions:



Plots a confusion matrix and ROC curve for the Decision
Tree classifier using the plot_cm_roc() function. These
visualizations help assess the model's performance in
terms of classification accuracy and trade-offs between
true positive and false positive rates.
Plots a diagram comparing true values versus predicted
values and a learning curve using the
plot_real_pred_val_learning_curve() function. These
visualizations provide insights into the model's behavior
and its ability to generalize to new data.
Shows a table of results by reading the "results_DT.csv"
file using the obj_data.read_dataset() method. This table
contains evaluation metrics and performance statistics
related to the Decision Tree model.

4. Display of Results:
The code may display the results, such as visualizations and tables, to
the user interface (UI) or interface with a graphical user interface
(GUI) toolkit (e.g., Tkinter) for user interaction.

Overall, this code block represents the logic for training, evaluating, and
visualizing results for a Decision Tree classifier when it is the selected
machine learning model. It aims to provide insights into the model's
performance and assist users in making informed decisions based on the
model's predictions and evaluation metrics.
 
Run main_class.py. Next, click on SPLIT DATA button. Then, choose
Decision Trees to see the result of using Decision Trees classifier as shown
in figure 34.
 



Figure 34 The results of using Decision Trees classifier
 
Output:
Decision Trees
accuracy:  0.8636959370904325
recall:  0.8636959370904325
precision:  0.8641929000245966
f1:  0.8636533127958457
              precision    recall  f1-score   support
 
           0       0.88      0.85      0.86       382
           1       0.85      0.88      0.87       381
 
    accuracy                           0.86       763
   macro avg       0.86      0.86      0.86       763
weighted avg       0.86      0.86      0.86       763
 
Let's analyze the "Decision Trees" model in detail and draw specific
conclusions:
Analysis:

1. Accuracy: The model achieved an accuracy of 86.37%, which is
reasonably good. This means that it correctly classified
approximately 86.37% of the total instances in the test dataset.



2. Recall: The recall score, also known as sensitivity or true
positive rate, is 0.8637. This implies that the model correctly
identified around 86.37% of the actual positive cases (responsive
customers) in the dataset. A higher recall is desirable in
scenarios where identifying all positive cases is crucial.

3. Precision: The precision score is 0.8642. This indicates that out
of all the instances predicted as positive (responsive customers),
approximately 86.42% were true positives. Precision measures
the model's ability to make accurate positive predictions.

4. F1-Score: The F1-score is 0.8637. The F1-score is the harmonic
mean of precision and recall and provides a balanced measure of
a model's performance. In this case, it suggests a well-balanced
trade-off between precision and recall.

5. Class-Specific Metrics:
For class 0 (Responsive):

Precision: 0.88
Recall: 0.85
F1-Score: 0.86

For class 1 (Not Responsive):
Precision: 0.85
Recall: 0.88
F1-Score: 0.87

These class-specific metrics show that the model performs similarly
for both responsive and not responsive customers, with balanced
precision and recall for both classes.

6. Macro and Weighted Averages: The macro-average F1-score,
which considers class balance, is approximately 0.86. The
weighted average F1-score, which accounts for class imbalance,
is also around 0.86. These values suggest that the model's
performance is consistent across classes.

Conclusion:
The "Decision Trees" machine learning model performs quite well for the
given classification task. It achieves an accuracy of approximately 86.37%
and demonstrates balanced precision and recall for both responsive and not
responsive customer classes. This balance indicates that the model is



effective in correctly identifying both types of customers, making it a
suitable choice for the task.
 
The model's consistent performance across different evaluation metrics and
class-specific measures further supports its reliability. Therefore, based on
the provided results, the "Decision Trees" model can be considered a robust
and effective solution for classifying customer responsiveness.
 
 
Gradient Boosting Classifier and Grid Search
In Machine_Learning class, define a new method named
gradient_boosting() as follows:
 
 def gradient_boosting(self, name, X_train, X_test, y_train, y_test):
 #Gradient Boosting Classifier      
 # Initialize the GradientBoostingClassifier model
        gbt = GradientBoostingClassifier(random_state=2021)
 
 # Define the parameter grid for the grid search
        param_grid = {
 'n_estimators': [100, 200, 300],
 'max_depth': [10, 20, 30],
 'subsample': [0.6, 0.8, 1.0],
 'max_features': [0.2, 0.4, 0.6, 0.8, 1.0],
        }
 
 # Create GridSearchCV with the GradientBoostingClassifier model and the
parameter grid
        grid_search = GridSearchCV(gbt, param_grid, cv=3,
scoring='accuracy', n_jobs=-1)
 
 # Train and perform grid search
        grid_search.fit(X_train, y_train)
 
 # Get the best GradientBoostingClassifier model from the grid search
        best_model = grid_search.best_estimator_



 
 #Saves model
        joblib.dump(best_model, 'GB_Model.pkl')    
 
 # Print the best hyperparameters found
 print(f"Best Hyperparameters for GB:")
 print(grid_search.best_params_)        
 
 return best_model
 
This code is to define a function called gradient_boosting() for training and
hyperparameter tuning a Gradient Boosting Classifier. Let's break down the
code step by step:

1. def gradient_boosting(self, name, X_train, X_test, y_train,
y_test):

This function takes several parameters:
name: The name of the model, used for labeling or
logging.
X_train, X_test: The training and testing feature sets.
y_train, y_test: The corresponding training and testing
target labels.

2. gbt = GradientBoostingClassifier(random_state=2021)
It initializes a Gradient Boosting Classifier (gbt) with a fixed random
state of 2021 for reproducibility.

3. param_grid = { ... }
This defines a parameter grid for hyperparameter tuning. It specifies
different values to explore for the following hyperparameters:

n_estimators: The number of boosting stages.
max_depth: The maximum depth of each tree in the
ensemble.
subsample: The fraction of samples used for fitting the
trees.
max_features: The fraction of features used for fitting the
trees.

4. grid_search = GridSearchCV(gbt, param_grid, cv=3,
scoring='accuracy', n_jobs=-1)



It creates a GridSearchCV object (grid_search) for hyperparameter
tuning.

gbt is the model to be tuned.
param_grid is the grid of hyperparameters to search.
cv=3 specifies 3-fold cross-validation.
scoring='accuracy' indicates that accuracy is used as the
scoring metric for evaluation.
n_jobs=-1 allows parallel processing to speed up the
search.

5. grid_search.fit(X_train, y_train)
It fits the GridSearchCV object to the training data (X_train and
y_train) to find the best hyperparameters using cross-validation.

6. best_model = grid_search.best_estimator_
It retrieves the best model found during the hyperparameter search.

7. joblib.dump(best_model, 'GB_Model.pkl')
It saves the best model to a file named 'GB_Model.pkl'.

8. print(f"Best Hyperparameters for GB:") and
print(grid_search.best_params_)

These lines print out the best hyperparameters found for the Gradient
Boosting Classifier.

This code is part of a machine learning workflow where different classifiers
are trained and tuned. The Gradient Boosting Classifier is one of the models
being considered, and this function handles its training and hyperparameter
tuning.
 
Then, in Machine_Learning class, define a new method named
implement_GB():
 
 def implement_GB(self, chosen, X_train, X_test, y_train, y_test):
        file_path = os.getcwd()+"/GB_Model.pkl"
 if os.path.exists(file_path):
            model = joblib.load('GB_Model.pkl')
            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)
 else:



            model = self.gradient_boosting(chosen, X_train, X_test, y_train,
y_test)
            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)
 
 #Saves result into excel file
 self.obj_data.save_result(y_test, y_pred, "results_GB.csv")
 
 print("Training Gradient Boosting done...")
 return model, y_pred
 
Let's dive into more detail about the implement_GB() function and its
purpose in the context of a machine learning workflow.

1. Purpose of implement_GB() Function:
The implement_GB() function is a part of a larger machine learning
workflow, where different classifiers are trained, evaluated, and
compared. Specifically, this function is responsible for implementing
and evaluating a Gradient Boosting Classifier (GB) on a given
dataset.

2. Parameters:
The function takes the following parameters:

chosen: A string representing the chosen classifier's name
or identifier. In this case, it's expected to be "Gradient
Boosting."
X_train, X_test: The feature sets for training and testing
the classifier.
y_train, y_test: The corresponding target labels for training
and testing.

3. Checking for Pre-trained Model:
The function first constructs a file path to check if a pre-trained model
file ('GB_Model.pkl') exists in the current working directory.

file_path = os.getcwd()+"/GB_Model.pkl"
It checks whether this file exists using:

if os.path.exists(file_path):
4. Loading Pre-trained Model:



If a pre-trained model file exists, the function loads it using the
joblib.load function. This means that a trained GB model has been
saved previously, and the function can use it for predictions without
retraining.

model = joblib.load('GB_Model.pkl')
5. Making Predictions with Pre-trained Model:

With the pre-trained model loaded, the function proceeds to make
predictions on the test dataset (X_test) using this model:

y_pred = self.run_model(chosen, model, X_train, X_test,
y_train, y_test, proba=True)
Here, self.run_model is called with the proba=True
argument, indicating that it should return probability
scores.

6. Training a New Model:
If no pre-trained model file is found (i.e., the else block), it means that
a GB model needs to be trained and tuned from scratch. This is done
by calling the gradient_boosting function:

model = self.gradient_boosting(chosen, X_train, X_test,
y_train, y_test)

The gradient_boosting function is presumably responsible for
hyperparameter tuning and training a GB classifier.

7. Making Predictions with the New Model:
After training a new model, the function proceeds to make
predictions on the test dataset using this model, similar to
step 5.
y_pred = self.run_model(chosen, model, X_train, X_test,
y_train, y_test, proba=True)

8. Saving Results to a CSV File:
Regardless of whether the model was pre-trained or trained anew, the
function saves the actual and predicted target labels (y_test and
y_pred) into a CSV file named 'results_GB.csv' using the
self.obj_data.save_result method.

self.obj_data.save_result(y_test, y_pred, "results_GB.csv")
9. Printing a Completion Message:

Finally, the function prints a message indicating that the training and
evaluation of the Gradient Boosting Classifier are completed:



print("Training Gradient Boosting done...")
10. Returning Results:

The function returns two values: the trained GB model (model) and
the predicted target labels (y_pred). These can be used for further
analysis or reporting.

In summary, the implement_GB() function checks if a pre-trained GB
model exists and loads it for predictions if available. If not, it trains a new
GB model, makes predictions, saves the results to a CSV file, and returns
the model and predictions. This function is a key component of a machine
learning workflow that automates the training and evaluation of different
classifiers and saves the results for analysis and comparison.
 
Then, in Helper_Plot class, add this code to the end of choose_plot_ML()
method:
 
 if chosen == "Gradient Boosting":
            best_model, y_pred = self.obj_ml.implement_GB(chosen, X_train,
X_test, y_train, y_test)
 
 #Plots confusion matrix and ROC
 self.plot_cm_roc(best_model, X_test, y_test, y_pred, chosen, figure1,
canvas1)
 
 #Plots true values versus predicted values diagram and learning curve
 self.plot_real_pred_val_learning_curve(best_model, X_train, y_train,
                X_test, y_test, y_pred, chosen, figure2, canvas2)
 
 #Shows table of result
            df_lr = self.obj_data.read_dataset("results_GB.csv")
 self.shows_table(root, df_lr, 450, 750, "Y_test and Y_pred of Gradient
Boosting")
 
Here's a description of the functionality performed when the user selects
"Gradient Boosting" as the chosen classifier in the machine learning
application:



1. Classifier Selection:
The application checks if the chosen classifier is "Gradient Boosting."

2. Implementation of Gradient Boosting Classifier:
If "Gradient Boosting" is selected, the application calls a
function responsible for implementing the Gradient
Boosting Classifier. This function may involve tasks such
as hyperparameter tuning, model training, and prediction
generation.
The trained Gradient Boosting model (best_model) is
obtained.
Predicted labels (y_pred) are generated using the trained
model.

3. Visualization of Evaluation Metrics:
The application plots a confusion matrix and ROC curve. These
visualizations help users understand the classifier's performance.

4. Visualizing True vs. Predicted Values and Learning Curve:
Another plot displays true values vs. predicted values,
allowing users to see how well the model's predictions
align with actual values.
A learning curve is also plotted, which illustrates the
model's performance concerning the training dataset's size.

5. Displaying a Table of Results:
Evaluation results, typically stored in a CSV file
("results_GB.csv"), are loaded into a DataFrame (df_lr).
The application displays this DataFrame in a tabular
format within the graphical user interface (GUI). The
table's location, dimensions, and title are predefined.

In summary, when "Gradient Boosting" is chosen as the classifier, the
application performs a series of tasks, including model implementation,
visualization of evaluation metrics, and presentation of results in a user-
friendly tabular format. These steps aim to assist users in assessing the
performance of the Gradient Boosting Classifier on a specific dataset.
 
Run main_class.py. Next, click on SPLIT DATA button. Then, choose
Gradient Boosting to see the result of using Gradient Boosting classifier as



shown in figure 35.
 
 

Figure 35 The results of using Gradient Boosting classifier
 
Output:
Gradient Boosting
accuracy:  0.9344692005242464
recall:  0.9344692005242464
precision:  0.9350581842811196
f1:  0.9344487080749257
              precision    recall  f1-score   support
 
           0       0.95      0.92      0.93       382
           1       0.92      0.95      0.94       381
 
    accuracy                           0.93       763
   macro avg       0.94      0.93      0.93       763
weighted avg       0.94      0.93      0.93       763
 
Let's break down the performance metrics and their implications in detail:

Accuracy: Accuracy measures the overall correctness of the
model's predictions. It is calculated as the ratio of correctly



predicted instances to the total number of instances. In the case
of the "Gradient Boosting" classifier, it achieved an accuracy of
approximately 93.45%. This means that about 93.45% of the
predictions made by the model were correct.
Recall (Sensitivity): Recall, also known as sensitivity or true
positive rate, measures the model's ability to correctly identify
positive instances (class 1 in this case). It is calculated as the
ratio of true positives (correctly identified class 1 instances) to
the total number of actual class 1 instances. In this case, the
recall for class 1 is approximately 95%, indicating that the model
is very effective at identifying instances of class 1.
Precision: Precision measures the model's ability to correctly
classify positive instances among all instances it predicts as
positive. It is calculated as the ratio of true positives to the total
number of instances predicted as positive. In this case, the
precision for class 1 is approximately 92%, indicating that when
the model predicts an instance as class 1, it is correct about 92%
of the time.
F1-Score: The F1-score is the harmonic mean of precision and
recall. It provides a balance between precision and recall and is
especially useful when dealing with imbalanced datasets. The
F1-score for class 1 is approximately 93.44%, which is a good
balance between precision and recall.
Classification Report: The classification report provides a more
detailed breakdown of precision, recall, and F1-score for each
class (class 0 and class 1). It allows us to see how well the model
performs for both classes individually.

Conclusion:
The "Gradient Boosting" classifier performed exceptionally well on the
dataset. It achieved a high accuracy of 93.45%, indicating strong overall
predictive performance. The model also demonstrated an excellent ability to
correctly identify instances of class 1, with a recall of 95% and a precision
of 92%. This means that it is effective at capturing and correctly classifying
the positive cases while minimizing false positives.
 



In summary, the "Gradient Boosting" classifier is a robust and accurate
model for the given dataset, with a well-balanced trade-off between
precision and recall, making it suitable for various classification tasks.
 
 
Extreme Gradient Boosting Classifier and Grid Search
In Machine_Learning class, define a new method named
extreme_gradient_boosting() as follows:
 
 def extreme_gradient_boosting(self, name, X_train, X_test, y_train,
y_test):
 # Define the parameter grid for the grid search
        param_grid = {
 'n_estimators': [100, 200, 300],
 'max_depth': [10, 20, 30],
 'learning_rate': [0.01, 0.1, 0.2],
 'subsample': [0.6, 0.8, 1.0],
 'colsample_bytree': [0.6, 0.8, 1.0],
        }
 
 # Initialize the XGBoost classifier
        xgb = XGBClassifier(random_state=2021, use_label_encoder=False,
eval_metric='mlogloss')
 
 # Create GridSearchCV with the XGBoost classifier and the parameter grid
        grid_search = GridSearchCV(xgb, param_grid, cv=3,
scoring='accuracy', n_jobs=-1)
 
 # Train and perform grid search
        grid_search.fit(X_train, y_train)
 
 # Get the best XGBoost classifier model from the grid search
        best_model = grid_search.best_estimator_
 
 #Saves model
        joblib.dump(best_model, 'XGB_Model.pkl')    



 
 # Print the best hyperparameters found
 print(f"Best Hyperparameters for XGB:")
 print(grid_search.best_params_)        
 
 return best_model
 
The extreme_gradient_boosting() is implementing the Extreme Gradient
Boosting (XGBoost) classifier. Let's break down this method step by step:

1. Parameter Grid: It defines a parameter grid that specifies a range
of hyperparameter values to search over during the grid search.
The hyperparameters include:

n_estimators: The number of boosting rounds.
max_depth: The maximum depth of each tree in the
ensemble.
learning_rate: The step size shrinkage to prevent
overfitting.
subsample: The fraction of samples used for fitting the
trees.
colsample_bytree: The fraction of features used for fitting
the trees.

2. Initialize XGBoost Classifier: It initializes the XGBoost
classifier (XGBClassifier) with specific settings:

random_state: Setting a random seed for reproducibility.
use_label_encoder: Disabling the label encoder to prevent
warnings (XGBoost typically expects labels to be encoded
as integers).
eval_metric: Specifying the evaluation metric as
"mlogloss," which is typically used for multiclass
classification problems.

3. GridSearchCV: It creates a GridSearchCV object that will
perform a grid search with cross-validation. The grid search aims
to find the best combination of hyperparameters based on
accuracy as the scoring metric. The cross-validation (cv)
parameter is set to 3, indicating 3-fold cross-validation.



4. Train and Perform Grid Search: The XGBoost classifier is
trained and evaluated using the provided hyperparameter grid.
Grid search tries various combinations of hyperparameters and
evaluates the model's accuracy on the training data using cross-
validation.

5. Best Model Selection: After the grid search, it selects the best
XGBoost classifier model based on the hyperparameters that
achieved the highest accuracy during cross-validation.

6. Model Saving: The best model is saved to a file named
'XGB_Model.pkl' using the joblib library. This allows you to
reuse the trained model without the need for retraining in future
sessions.

7. Printing Best Hyperparameters: The method prints the best
hyperparameters found during the grid search. These
hyperparameters represent the configuration that led to the
highest accuracy on the training data.

In summary, the extreme_gradient_boosting() method performs
hyperparameter tuning for the XGBoost classifier using grid search with
cross-validation. It helps identify the optimal hyperparameters for the
classifier, and the best model is saved for later use. This process aims to
improve the model's predictive performance on the given dataset.
 
Then, in Machine_Learning class, define a new method named
implement_XGB():
 
 def implement_XGB(self, chosen, X_train, X_test, y_train, y_test):
        file_path = os.getcwd()+"/XGB_Model.pkl"
 if os.path.exists(file_path):
            model = joblib.load('XGB_Model.pkl')
            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)
 else:
            model = self.extreme_gradient_boosting(chosen, X_train, X_test,
y_train, y_test)



            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)
 
 #Saves result into excel file
 self.obj_data.save_result(y_test, y_pred, "results_XGB.csv")
 
 print("Training Extreme Gradient Boosting done...")
 return model, y_pred
 
The implement_XGB() method is responsible for implementing the
Extreme Gradient Boosting (XGBoost) classifier and performing various
operations. Let's break down this method step by step:

1. File Path Check: It checks whether a file named
'XGB_Model.pkl' exists in the current working directory. This
file is typically used to store a pre-trained XGBoost model for
reuse.

2. Conditional Execution:
If the 'XGB_Model.pkl' file exists, it implies that a pre-
trained XGBoost model is available. In this case, it loads
the pre-trained model from the file using joblib.load.
If the file does not exist, it means that there is no pre-
trained model available, so it proceeds to train a new
XGBoost model using the extreme_gradient_boosting()
method.

3. Model Training and Prediction: Whether using the pre-trained
model or training a new one, it calls the run_model() method to
make predictions on the test data. The proba=True argument
indicates that probability estimates should be returned by the
model.

4. Result Saving: The method saves the results of the model
predictions (both true labels and predicted labels) into an Excel
file named 'results_XGB.csv' using the obj_data.save_result()
method. This file typically contains evaluation metrics and other
relevant information.

5. Print Status Message: It prints a message indicating that the
training of the XGBoost model is complete.



6. Return Model and Predictions: The method returns the trained
XGBoost model and the predictions made by the model on the
test data.

In summary, the implement_XGB method serves as a wrapper for training
and using an XGBoost classifier. It first checks if a pre-trained model exists
and loads it if available. Otherwise, it trains a new XGBoost model using
hyperparameter tuning. After making predictions on the test data, it saves
the results and returns the model and predictions for further analysis or use.
 
Then, in Helper_Plot class, add this code to the end of choose_plot_ML()
method:
 
 if chosen == "Extreme Gradient Boosting":
            best_model, y_pred = self.obj_ml.implement_XGB(chosen, X_train,
X_test, y_train, y_test)
 
 #Plots confusion matrix and ROC
 self.plot_cm_roc(best_model, X_test, y_test, y_pred, chosen, figure1,
canvas1)
 
 #Plots true values versus predicted values diagram and learning curve
 self.plot_real_pred_val_learning_curve(best_model, X_train, y_train,
                X_test, y_test, y_pred, chosen, figure2, canvas2)
 
 #Shows table of result
            df_lr = self.obj_data.read_dataset("results_XGB.csv")
 self.shows_table(root, df_lr, 450, 750, "Y_test and Y_pred of Extreme
Gradient Boosting")
 
The block of code is implementing and evaluating an Extreme Gradient
Boosting (XGBoost) classifier, and it performs the following tasks:

1. Model Implementation:
It checks if the selected algorithm is "Extreme Gradient
Boosting" (XGBoost).



If the selected algorithm is XGBoost, it proceeds to
implement the XGBoost model using the
implement_XGB() method. This method will train a new
XGBoost model or load a pre-trained one if it exists.

2. Evaluation and Visualization:
After obtaining the XGBoost model and predictions
(best_model and y_pred), it proceeds to evaluate the
model's performance.
It plots a confusion matrix and ROC curve using the
plot_cm_roc() method. The confusion matrix provides
insights into the model's ability to correctly classify
samples, and the ROC curve shows the model's
discrimination ability.
It also plots a diagram of true values versus predicted
values and a learning curve using the
plot_real_pred_val_learning_curve() method. The diagram
helps visualize how well the model's predictions align with
the true values, and the learning curve provides
information about the model's performance as the training
data size increases.

3. Result Table:
It reads the results of the XGBoost model's predictions
from an Excel file named "results_XGB.csv" using the
obj_data.read_dataset method.
The results include metrics such as accuracy, precision,
recall, and F1-score, as well as other relevant information.

4. Table Display:
It displays a table of results in the graphical user interface (GUI)
using the shows_table method. This table provides a summary of the
model's performance metrics and may include additional details about
the predictions.

Overall, this code block allows you to train, evaluate, and visualize the
performance of an XGBoost classifier, making it easier to understand how
well the model is performing on the given dataset. It also provides a user-



friendly way to view the results in the GUI, facilitating model assessment
and decision-making.
 
Run main_class.py. Next, click on SPLIT DATA button. Then, choose
Extreme Gradient Boosting to see the result of using Extreme Gradient
Boosting classifier as shown in figure 36.
 
Output:
accuracy:  0.9187418086500655
recall:  0.9187418086500655
precision:  0.919159842964031
f1:  0.9187233804770313
              precision    recall  f1-score   support
 
           0       0.93      0.90      0.92       382
           1       0.91      0.93      0.92       381
 
    accuracy                           0.92       763
   macro avg       0.92      0.92      0.92       763
weighted avg       0.92      0.92      0.92       763

Figure 36 The results of using Extreme Gradient Boosting
 
The output is the evaluation result of the Extreme Gradient Boosting
(XGBoost) classifier. Let's break down the metrics and analyze the model's



performance:
Accuracy: The accuracy of the model is approximately 91.87%,
which means that it correctly predicts the class labels for about
91.87% of the total samples in the test dataset.
Recall (Sensitivity): The recall is approximately 91.87% for both
classes. This metric measures the model's ability to correctly
identify positive samples (class 1) and negative samples (class
0). A high recall indicates that the model effectively captures
true positive cases while minimizing false negatives.
Precision: The precision of the model is approximately 91.92%
for class 0 and 91.91% for class 1. Precision measures how many
of the predicted positive cases are actually true positives. A high
precision suggests that when the model predicts a positive class,
it is correct most of the time.
F1-Score: The F1-score is approximately 91.87% for both
classes. The F1-score is the harmonic mean of precision and
recall and provides a balanced measure of a model's
performance. It considers both false positives and false negatives
and is particularly useful when dealing with imbalanced datasets.
Classification Report: The classification report provides a
summary of precision, recall, and F1-score for each class (0 and
1). It also includes support, which represents the number of
samples for each class.

In conclusion, the Extreme Gradient Boosting (XGBoost) classifier
performs well on the given dataset, achieving high accuracy, recall,
precision, and F1-scores for both classes. These metrics indicate that the
model effectively discriminates between the two classes and makes accurate
predictions. The balanced F1-scores suggest that the model is suitable for
tasks where both precision and recall are essential, such as binary
classification problems with imbalanced classes.
 
 
Multi-Layer Perceptron Classifier and Grid Search
In Machine_Learning class, define a new method named
multi_layer_perceptron() as follows:



 
 def multi_layer_perceptron(self, name, X_train, X_test, y_train, y_test):
 # Define the parameter grid for the grid search
        param_grid = {
 'hidden_layer_sizes': [(50,), (100,), (50, 50), (100, 50), (100, 100)],
 'activation': ['logistic', 'relu'],
 'solver': ['adam', 'sgd'],
 'alpha': [0.0001, 0.001, 0.01],
 'learning_rate': ['constant', 'invscaling', 'adaptive'],
        }
 
 # Initialize the MLP Classifier
        mlp = MLPClassifier(random_state=2021)
 
 # Create GridSearchCV with the MLP Classifier and the parameter grid
        grid_search = GridSearchCV(mlp, param_grid, cv=3,
scoring='accuracy', n_jobs=-1)
 
 # Train and perform grid search
        grid_search.fit(X_train, y_train)
 
 # Get the best MLP Classifier model from the grid search
        best_model = grid_search.best_estimator_
 
 #Saves model
        joblib.dump(best_model, 'MLP_Model.pkl')    
 
 # Print the best hyperparameters found
 print(f"Best Hyperparameters for MLP:")
 print(grid_search.best_params_)        
 
 return best_model
 
The multi_layer_perceptron() function is a part of a machine learning
pipeline for training and evaluating a Multi-Layer Perceptron (MLP)
classifier. Let's break down the key components of this function:



1. Parameter Grid: You've defined a parameter grid param_grid that
includes various hyperparameters for tuning the MLP model.
These hyperparameters include the architecture of the neural
network (hidden layer sizes), activation functions, optimization
algorithms, regularization strength (alpha), and learning rate
scheduling.

2. MLP Classifier Initialization: You initialize an instance of the
MLP Classifier with a fixed random seed (random_state=2021).
The MLP Classifier is a type of artificial neural network used for
classification tasks.

3. Grid Search: You create a GridSearchCV object named
grid_search, which will perform an exhaustive search over the
hyperparameter grid defined earlier. Grid search is used to find
the best combination of hyperparameters for the MLP model.

4. Training and Grid Search: You fit (train) the MLP model on the
training data (X_train, y_train) using the GridSearchCV object.
This trains multiple MLP models with different hyperparameter
combinations and evaluates their performance using cross-
validation (cv=3).

5. Best Model Selection: After the grid search is complete, you
obtain the best MLP model from the grid search results using
grid_search.best_estimator_.

6. Model Saving: If desired, you save the best MLP model to a file
named 'MLP_Model.pkl' using joblib. This allows you to reuse
the trained model without having to retrain it in the future.

7. Printing Best Hyperparameters: You print out the best
hyperparameters found by the grid search. This information
helps you understand which hyperparameters contributed to the
best model's performance.

Overall, this function automates the process of hyperparameter tuning for
an MLP classifier and allows you to efficiently search for the best
configuration to achieve optimal performance on the classification task.
 
Then, in Machine_Learning class, define a new method named
implement_MLP():



 
 def implement_MLP(self, chosen, X_train, X_test, y_train, y_test):
        file_path = os.getcwd()+"/MLP_Model.pkl"
 if os.path.exists(file_path):
            model = joblib.load('MLP_Model.pkl')
            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)
 else:
            model = self.multi_layer_perceptron(chosen, X_train, X_test,
y_train, y_test)
            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)
 
 #Saves result into excel file
 self.obj_data.save_result(y_test, y_pred, "results_MLP.csv")
 
 print("Training Multi-Layer Perceptron done...")
 return model, y_pred
 
The implement_MLP() function is part of a machine learning pipeline and
is used to implement and evaluate a Multi-Layer Perceptron (MLP)
classifier for a given dataset. Let's break down the key components of this
function:

1. Model Loading or Training: First, the function checks if a pre-
trained MLP model exists in a file named 'MLP_Model.pkl' in
the current working directory. If the file exists, it loads the pre-
trained model using joblib.load. If not, it proceeds to train a new
MLP model.

2. Model Training: If a pre-trained model does not exist, the
function calls the multi_layer_perceptron() function, passing the
chosen configuration, training data (X_train and y_train), and
testing data (X_test and y_test). This function performs
hyperparameter tuning and training of the MLP model.

3. Model Evaluation: After either loading the pre-trained model or
training a new one, the function uses the trained model to make
predictions on the testing data (X_test) by calling the run_model



function. It requests probabilistic predictions (proba=True),
indicating that it wants probability scores for each class.

4. Result Saving: The actual and predicted values (probabilities)
are saved into an Excel file named 'results_MLP.csv' using the
save_result() method of the obj_data object. This allows for later
analysis and comparison of the model's performance.

5. Print Status: Finally, the function prints a message indicating that
the training or loading of the MLP model is complete.

Overall, this function handles the entire pipeline of training and evaluating
an MLP classifier, including the option to load a pre-trained model if one
exists. This approach saves time and resources by avoiding unnecessary
retraining of models when the same configuration has been trained
previously.
 
Then, in Helper_Plot class, add this code to the end of choose_plot_ML()
method:
 
 if chosen == "Multi-Layer Perceptron":
            best_model, y_pred = self.obj_ml.implement_MLP(chosen, X_train,
X_test, y_train, y_test)
 
 #Plots confusion matrix and ROC
 self.plot_cm_roc(best_model, X_test, y_test, y_pred, chosen, figure1,
canvas1)
 
 #Plots true values versus predicted values diagram and learning curve
 self.plot_real_pred_val_learning_curve(best_model, X_train, y_train,
                X_test, y_test, y_pred, chosen, figure2, canvas2)
 
 #Shows table of result
            df_lr = self.obj_data.read_dataset("results_MLP.csv")
 self.shows_table(root, df_lr, 450, 750, "Y_test and Y_pred of Multi-Layer
Perceptron")
 
Here's what it does step by step:



1. Model Implementation (implement_MLP()): If the chosen model
is "Multi-Layer Perceptron," it loads a pre-trained MLP model if
it exists (saved as a file named "MLP_Model.pkl" in the current
working directory). If the pre-trained model doesn't exist, it
trains a new MLP model using grid search to find the best
hyperparameters. Then, it uses this model to make predictions on
the test data.

2. Performance Visualization (plot_cm_roc() and
plot_real_pred_val_learning_curve()): After obtaining the
predictions from the MLP model, it proceeds to create two types
of plots:

Confusion Matrix and ROC Curve (plot_cm_roc()): It
generates a confusion matrix and ROC curve to visually
evaluate the performance of the MLP model on the test
data.
True Values versus Predicted Values Diagram and
Learning Curve (plot_real_pred_val_learning_curve): It
creates a diagram that compares the true values to the
predicted values. Additionally, it plots a learning curve to
illustrate how the model's performance changes with
different training dataset sizes.

3. Results Presentation (shows_table): It loads the results of the
MLP model from an Excel file named "results_MLP.csv." This
Excel file contains various performance metrics for the model. It
then displays these results in a table within the GUI.

In summary, this section of the code focuses on training, evaluating, and
visualizing the performance of an MLP classifier. It includes features like
loading pre-trained models, conducting hyperparameter tuning with grid
search, and presenting the results through various visualizations and tables.
 
Run main_class.py. Next, click on SPLIT DATA button. Then, choose
Multi-Layer Perceptron to see the result of using Multi-Layer Perceptron
classifier as shown in figure 37.
 



Figure 37 The results of using Multi-Layer Perceptron classifier
Output:
Multi-Layer Perceptron
accuracy:  0.9043250327653998
recall:  0.9043250327653998
precision:  0.9063689747768858
f1:  0.9042095303827421
              precision    recall  f1-score   support
 
           0       0.94      0.87      0.90       382
           1       0.88      0.94      0.91       381
 
    accuracy                           0.90       763
   macro avg       0.91      0.90      0.90       763
weighted avg       0.91      0.90      0.90       763
 
The output is the performance evaluation of the Multi-Layer Perceptron
(MLP) classifier. Let's break down the key metrics and their implications:

Accuracy: Accuracy measures the overall correctness of the
model's predictions. In this case, the MLP classifier achieved an
accuracy of approximately 90.43%. This means that about
90.43% of the test data samples were classified correctly by the
model.



Recall (Sensitivity): Recall quantifies the model's ability to
correctly identify positive instances out of all actual positive
instances. For the positive class (class 1), the MLP classifier
achieved a recall of approximately 90.43%. This indicates that
the model correctly identified around 90.43% of all actual
positive cases.
Precision: Precision gauges the model's precision in correctly
predicting positive instances. The MLP classifier achieved a
precision of approximately 90.64% for the positive class. This
means that among all instances predicted as positive, around
90.64% were indeed positive.
F1-Score: The F1-score is the harmonic mean of precision and
recall, providing a balance between these two metrics. For the
positive class, the MLP classifier achieved an F1-score of
approximately 90.42%. A higher F1-score indicates a better
balance between precision and recall.
Classification Report: The classification report provides a
summary of precision, recall, and F1-score for each class (0 and
1). It also shows the support, which is the number of actual
occurrences of each class in the test dataset.

Here's a conclusion based on the performance metrics:
The Multi-Layer Perceptron (MLP) classifier performed reasonably well on
the test dataset, with an accuracy of approximately 90.43%. It showed a
balanced performance between precision and recall, with F1-scores close to
0.90 for both classes. This suggests that the MLP classifier is effective in
correctly classifying instances from both classes (0 and 1). However, further
domain-specific analysis may be necessary to determine whether this level
of performance meets the specific requirements of the problem at hand.
Support Vector Classifier and Grid Search
In Machine_Learning class, define a new method named support_vector()
as follows:
 
 def support_vector(self, name, X_train, X_test, y_train, y_test):
 #Support Vector Classifier
 # Define the parameter grid for the grid search



        param_grid = {
 'C': [0.1, 1, 10],
 'kernel': ['linear', 'poly', 'rbf'],
 'gamma': ['scale', 'auto', 0.1, 1],
        }
 
 # Initialize the SVC model
        model_svc = SVC(random_state=2021, probability=True)
 
 # Create GridSearchCV with the SVC model and the parameter grid
        grid_search = GridSearchCV(model_svc, param_grid, cv=3,
scoring='accuracy', n_jobs=-1, refit=True)
 
 # Train and perform grid search
        grid_search.fit(X_train, y_train)
 
 # Get the best MLP Classifier model from the grid search
        best_model = grid_search.best_estimator_
 
 #Saves model
        joblib.dump(best_model, 'SVC_Model.pkl')    
 
 # Print the best hyperparameters found
 print(f"Best Hyperparameters for SVC:")
 print(grid_search.best_params_)        
 
 return best_model
 
The support_vector() function is for training a Support Vector Classifier
(SVC) and performing hyperparameter tuning using grid search. Here's an
explanation of each part of the function:

1. Parameter Grid Definition: You define a parameter grid
param_grid that includes the hyperparameters to be tuned during
grid search. These hyperparameters are:

'C': This parameter controls the regularization strength.
You provide a list of potential values: [0.1, 1, 10].



'kernel': The kernel function used for transforming the
data. You specify three kernel options: 'linear', 'poly', and
'rbf'.
'gamma': This parameter defines the kernel coefficient.
You provide a list of values: ['scale', 'auto', 0.1, 1].

2. SVC Model Initialization: You initialize the Support Vector
Classifier (SVC) model with specific settings. You set
random_state=2021 for reproducibility and probability=True to
enable probability estimates.

 
3. GridSearchCV Setup: You create a GridSearchCV object named

grid_search. This object combines the SVC model with the
parameter grid for hyperparameter tuning. It uses 3-fold cross-
validation (cv=3), measures performance using accuracy
(scoring='accuracy'), and utilizes all available CPU cores
(n_jobs=-1).

4. Grid Search Training: You fit the grid_search object to the
training data (X_train and y_train). This process performs an
exhaustive search over the hyperparameter combinations
specified in param_grid to find the best combination based on
cross-validated accuracy.

5. Best Model Selection: After grid search is complete, you obtain
the best SVC model (best_model) based on the hyperparameters
that resulted in the highest cross-validated accuracy.

6. Model Saving: The best model is saved to a file named
'SVC_Model.pkl' using the joblib.dump() function.

7. Printing Hyperparameters: You print the best hyperparameters
found during the grid search.

The function returns the best trained SVC model with the selected
hyperparameters.
 
This code demonstrates the process of hyperparameter tuning for an SVC
model using grid search, helping you find the best combination of



hyperparameters that optimizes the model's performance on the training
data.
 
Then, in Machine_Learning class, define a new method named
implement_SVC():
 
 def implement_SVC(self, chosen, X_train, X_test, y_train, y_test):
        file_path = os.getcwd()+"/SVC_Model.pkl"
 if os.path.exists(file_path):
            model = joblib.load('SVC_Model.pkl')
            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)
 else:
            model = self.support_vector(chosen, X_train, X_test, y_train,
y_test)
            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)
 
 #Saves result into excel file
 self.obj_data.save_result(y_test, y_pred, "results_SVC.csv")
 
 print("Training Support Vector Classifier done...")
 return model, y_pred
 
The implement_SVC() function is responsible for training a Support Vector
Classifier (SVC) model and performing predictions. Here's a breakdown of
the function:

1. File Path Checking: It first checks if a pre-trained SVC model
exists in a file named 'SVC_Model.pkl' in the current working
directory (os.getcwd()). If the file exists, it loads the pre-trained
model using joblib.load. If not, it proceeds to train a new model.

2. Model Training or Loading: If a pre-trained model doesn't exist,
it calls the support_vector() function to train a new SVC model.
This function performs hyperparameter tuning and returns the
best model. The newly trained or loaded model is stored in the
model variable.



3. Model Prediction: The function uses the trained or loaded model
(model) to make predictions on the input data (X_train, X_test,
y_train, y_test) using the run_model() function with proba=True.
This means it returns probability estimates.

4. Saving Predictions: The function saves the predicted values
(y_pred) and the corresponding true values (y_test) into an Excel
file named "results_SVC.csv" using the save_result function.

5. Print Status: It prints a message indicating that the training of the
Support Vector Classifier is complete.

6. Return Values: The function returns two values: the trained or
loaded SVC model (model) and the predicted values (y_pred).

This function essentially serves as a wrapper for training and using the SVC
model, ensuring that if a pre-trained model exists, it's loaded, and if not, a
new model is trained. It also handles the saving of prediction results for
later analysis or reporting.
 
 
Then, in Helper_Plot class, add this code to the end of choose_plot_ML()
method:
 
 if chosen == "Support Vector Classifier":
            best_model, y_pred = self.obj_ml.implement_SVC(chosen, X_train,
X_test, y_train, y_test)
 
 #Plots confusion matrix and ROC
 self.plot_cm_roc(best_model, X_test, y_test, y_pred, chosen, figure1,
canvas1)
 
 #Plots true values versus predicted values diagram and learning curve
 self.plot_real_pred_val_learning_curve(best_model, X_train, y_train,
                X_test, y_test, y_pred, chosen, figure2, canvas2)
 
 #Shows table of result
            df_lr = self.obj_data.read_dataset("results_SVC.csv")



 self.shows_table(root, df_lr, 450, 750, "Y_test and Y_pred of Support
Vector Classifier")
 
The code is for training and evaluating support vector classifier. Here's a
summary of what this block of code does:
 

1. Model Selection: It checks if the selected machine learning
model is a "Support Vector Classifier" (chosen == "Support
Vector Classifier"). If the selected model matches, it proceeds to
train and evaluate the Support Vector Classifier. This is part of a
graphical user interface (GUI) or command-line interface (CLI)
where users can choose which machine learning model to train
and evaluate.

2. Model Training: If the chosen model is a Support Vector
Classifier, it calls the implement_SVC method to train the
Support Vector Classifier using the provided training data
(X_train, y_train) and make predictions on the test data (X_test).
The trained model (best_model) and the predictions (y_pred) are
returned.

3. Evaluation and Visualization: It then proceeds to evaluate the
model and create visualizations:

It plots the confusion matrix and Receiver Operating
Characteristic (ROC) curve for the Support Vector
Classifier using the plot_cm_roc() method. These
visualizations help assess the model's performance and its
ability to distinguish between different classes.
It plots a diagram that compares true values versus
predicted values and a learning curve using the
plot_real_pred_val_learning_curve() method. This helps in
visualizing how well the model's predictions align with the
actual values and how its performance changes with
different amounts of training data.
It displays a table of results obtained from the Support
Vector Classifier using the shows_table() method. This
table contains various evaluation metrics such as accuracy,



precision, recall, and F1-score, comparing the model's
predictions to the actual test data.

4. Result Storage: The code appears to store the evaluation results,
possibly in an Excel file with the filename "results_SVC.csv"
using the save_result() method. This allows for later analysis and
comparison of results.

Overall, this code segment is a part of a larger machine learning pipeline
designed for training, evaluating, and visualizing different machine learning
models, with a focus on the Support Vector Classifier in this specific case.
Users can select the model they want to work with, and the system handles
the training, evaluation, and visualization of that model.
 
Run main_class.py. Next, click on SPLIT DATA button. Then, choose
Suppport Vector Classifier to see the result of using Suppport Vector
classifier as shown in figure 38.
 
Output:
Support Vector Classifier
accuracy:  0.9003931847968545
recall:  0.9003931847968545
precision:  0.9022701737370328
f1:  0.9002818528428114
              precision    recall  f1-score   support
 
           0       0.93      0.87      0.90       382
           1       0.87      0.93      0.90       381
 
    accuracy                           0.90       763
   macro avg       0.90      0.90      0.90       763
weighted avg       0.90      0.90      0.90       763
 



Figure 38 The results of using Support Vector classifier
 
The output is the evaluation result for the Support Vector Classifier (SVC)
model. Here's a detailed analysis of the metrics and a conclusion based on
the output:

Model Name: Support Vector Classifier
Overall Accuracy: 0.9004

Accuracy represents the ratio of correctly predicted instances to the
total number of instances in the dataset. In this case, the model
achieves an accuracy of approximately 90.04%, indicating that it
correctly classifies about 90.04% of the samples.

Recall (Sensitivity): 0.9004
Recall (also known as Sensitivity) measures the model's ability to
correctly identify positive instances (in this case, class 1). A recall
score of approximately 90.04% means that the model correctly
identifies about 90.04% of all actual positive cases.

Precision: 0.9023
Precision represents the ratio of correctly predicted positive instances
to all instances predicted as positive by the model. With a precision
score of approximately 90.23%, the model correctly predicts about
90.23% of the instances it labels as positive.

F1-Score: 0.9003
The F1-score is the harmonic mean of precision and recall. It provides
a balance between precision and recall. The F1-score of



approximately 90.03% suggests that the model achieves a good
balance between precision and recall.

Classification Report:
The classification report provides a breakdown of precision, recall,
and F1-score for each class (0 and 1) individually.

For class 0 (usually the negative class), the precision is 0.93,
recall is 0.87, and F1-score is 0.90.
For class 1 (usually the positive class), the precision is 0.87,
recall is 0.93, and F1-score is 0.90.

These values give insights into how well the model performs for each
class separately.

Conclusion:
The Support Vector Classifier (SVC) model performs well on the given
dataset with an overall accuracy of around 90.04%. It demonstrates a good
balance between precision and recall, as indicated by the F1-score of
approximately 90.03%. The model shows relatively consistent performance
for both class 0 and class 1, with similar precision, recall, and F1-score
values for both classes.
 
 
AdaBoost Classifier and Grid Search
In Machine_Learning class, define a new method named
adaboost_classifier() as follows:
 
 def adaboost_classifier(self, name, X_train, X_test, y_train, y_test):
 # Define the parameter grid for the grid search
        param_grid = {
 'n_estimators': [50, 100, 150],
 'learning_rate': [0.01, 0.1, 0.2],
        }
 
 # Initialize the AdaBoost classifier
        adaboost = AdaBoostClassifier(random_state=2021)
 



 # Create GridSearchCV with the AdaBoost classifier and the parameter
grid
        grid_search = GridSearchCV(adaboost, param_grid, cv=3,
scoring='accuracy', n_jobs=-1)
 
 
 # Train and perform grid search
        grid_search.fit(X_train, y_train)
 
 # Get the best AdaBoost Classifier model from the grid search
        best_model = grid_search.best_estimator_
 
 #Saves model
        joblib.dump(best_model, 'ADA_Model.pkl')    
 
 # Print the best hyperparameters found
 print(f"Best Hyperparameters for AdaBoost:")
 print(grid_search.best_params_)        
 
 return best_model
 
The code defines a function adaboost_classifier() that sets up an AdaBoost
Classifier model and performs hyperparameter tuning using grid search.
Here's an explanation of each part of the code:

1. Parameter Grid Definition:
param_grid is a dictionary that defines the
hyperparameters to be tuned and the range of values to
consider during the grid search.
It includes two hyperparameters:

n_estimators: The number of weak learners (base
estimators) to train in the ensemble.
learning_rate: The contribution of each weak learner
to the final prediction.

2. AdaBoost Classifier Initialization:
An AdaBoost Classifier is initialized with random_state=2021. This
classifier is an ensemble learning method that combines multiple



weak learners to create a strong classifier.
3. Grid Search Setup:

GridSearchCV is used to set up the grid search. It takes the AdaBoost
classifier, the parameter grid (param_grid), and other configurations:

cv=3: Performs a 3-fold cross-validation during the grid
search.
scoring='accuracy': Uses accuracy as the scoring metric to
evaluate model performance.
n_jobs=-1: Utilizes all available CPU cores for parallel
processing.

4. Grid Search Training:
The grid_search object is trained on the provided training
data (X_train and y_train).
It performs an exhaustive search over the hyperparameter
grid, fitting the AdaBoost Classifier with different
hyperparameter combinations and evaluating their
performance using cross-validation.

5. Best Model Selection:
After the grid search, the best-performing AdaBoost Classifier model
is selected based on the hyperparameter combinations that resulted in
the highest accuracy during cross-validation.

6. Model Saving:
The best model is saved using joblib.dump to a file named
'ADA_Model.pkl' for future use.

7. Print Hyperparameters:
The function prints the best hyperparameters found during the grid
search.

The purpose of this function is to automate the process of hyperparameter
tuning for an AdaBoost Classifier. It helps you find the optimal
combination of hyperparameters that maximize the model's accuracy on the
training data. The best model can then be used for making predictions on
new data.
 
Then, in Machine_Learning class, define a new method named
implement_ADA():



 
 def implement_ADA(self, chosen, X_train, X_test, y_train, y_test):
        file_path = os.getcwd()+"/ADA_Model.pkl"
 if os.path.exists(file_path):
            model = joblib.load('ADA_Model.pkl')
            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)
 else:
            model = self.adaboost_classifier(chosen, X_train, X_test, y_train,
y_test)
            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)
 
 #Saves result into excel file
 self.obj_data.save_result(y_test, y_pred, "results_ADA.csv")
 
 print("Training AdaBoost done...")
 return model, y_pred
 
The code defines a function implement_ADA() that implements an
AdaBoost Classifier for a binary classification problem. Here's a breakdown
of what the code does:

1. Model Loading or Training:
The function first checks if a saved AdaBoost Classifier
model exists in a file named 'ADA_Model.pkl' in the
current working directory.
If the model file exists, it loads the model using
joblib.load. This is done to avoid retraining the model if it
has already been trained and saved.
If the model file doesn't exist, it calls the
adaboost_classifier() function to train a new AdaBoost
Classifier. This function performs hyperparameter tuning
using grid search and returns the best-trained model.

2. Model Prediction:
Regardless of whether the model was loaded or trained, the function
uses the obtained AdaBoost Classifier model to make predictions on



the provided test data (X_test).
3. Result Saving:

The predicted labels (y_pred) are saved along with the true labels
(y_test) into an Excel file named "results_ADA.csv" using the
save_result method of the obj_data object. This file contains metrics
and results for model evaluation.

4. Printing Progress:
The function prints "Training AdaBoost done..." to indicate that the
model has been either loaded or trained and predictions have been
made.

5. Model and Predictions Return:
The function returns both the AdaBoost Classifier model and the
predicted labels (y_pred) for further analysis or use.

This function essentially encapsulates the process of loading a pre-trained
AdaBoost model (if available) or training a new one, making predictions on
test data, and saving the results. It provides flexibility for reusing a trained
model and avoids redundant training when the model has already been
trained and saved in a previous run.
 
Then, in Helper_Plot class, add this code to the end of choose_plot_ML()
method:
 
 if chosen == "AdaBoost":
            best_model, y_pred = self.obj_ml.implement_ADA(chosen,
X_train, X_test, y_train, y_test)
 
 #Plots confusion matrix and ROC
 self.plot_cm_roc(best_model, X_test, y_test, y_pred, chosen, figure1,
canvas1)
 
 #Plots true values versus predicted values diagram and learning curve
 self.plot_real_pred_val_learning_curve(best_model, X_train, y_train,
                X_test, y_test, y_pred, chosen, figure2, canvas2)
 
 #Shows table of result



            df_lr = self.obj_data.read_dataset("results_ADA.csv")
 self.shows_table(root, df_lr, 450, 750, "Y_test and Y_pred of AdaBoost
Classifier")
 
In this code, the program checks if the chosen machine learning algorithm
is "AdaBoost." If it is indeed AdaBoost, the code proceeds with the
following steps. First, it either loads a pre-trained AdaBoost Classifier
model from a file or trains a new one if the model file doesn't exist. This
trained model is used to make predictions on the test dataset, and the
resulting predictions (y_pred) are stored. Next, the code generates various
visualizations and reports for model evaluation. It creates a confusion
matrix and ROC curve, illustrating the model's classification performance.
Additionally, it plots a diagram comparing true values versus predicted
values and a learning curve to analyze the model's behavior and
performance over time.
 
Furthermore, the code reads the results from a previously saved Excel file
named "results_ADA.csv," containing crucial metrics and statistics related
to the AdaBoost Classifier's performance. It then displays these results in a
tabular format within the graphical user interface (GUI), enhancing the
user's ability to interpret and analyze the classifier's effectiveness. Overall,
this code section streamlines the implementation, evaluation, and
visualization of the AdaBoost Classifier, providing valuable insights into its
performance for informed decision-making.
 
Run main_class.py. Next, click on SPLIT DATA button. Then, choose
AdaBoost to see the result of using AdaBoost classifier as shown in figure
39.
 



Figure 39 The results of using AdaBoost classifier
 
Output:
AdaBoost
accuracy:  0.8636959370904325
recall:  0.8636959370904325
precision:  0.8643442185483509
f1:  0.8636397238206017
              precision    recall  f1-score   support
 
           0       0.88      0.84      0.86       382
           1       0.85      0.88      0.87       381
 
    accuracy                           0.86       763
   macro avg       0.86      0.86      0.86       763
weighted avg       0.86      0.86      0.86       763
 
The AdaBoost Classifier, as indicated by the output, achieved an accuracy
of approximately 86.37% on the test dataset. This means that it correctly
classified around 86.37% of the instances in the test set. The recall for both
classes (0 and 1) is reasonably balanced, with a slightly higher recall for
class 1 (positive class) compared to class 0 (negative class). Specifically, it
achieved a recall of approximately 88% for class 1, implying that it
correctly identified about 88% of the positive instances. For class 0, it had a



recall of roughly 84%, indicating that it successfully recognized around
84% of the negative instances.
 
In terms of precision, the AdaBoost Classifier achieved good results, with
precision values of approximately 88% for class 0 and 85% for class 1. This
means that when the model predicted a certain class, it was correct about
88% of the time for class 0 and 85% of the time for class 1. The F1-score,
which combines precision and recall into a single metric, is around 86.36%
for class 0 and 87% for class 1. These F1-scores reflect the balance between
precision and recall for each class. Overall, the AdaBoost Classifier
demonstrated reasonable performance on this dataset, with good accuracy
and balanced precision and recall values for both classes.
 
 
Following is the full source code:
#main_class.py
import tkinter as tk
from tkinter import *
from design_window import Design_Window
from process_data import Process_Data
from helper_plot import Helper_Plot
from machine_learning import Machine_Learning
import os
 
class Main_Class:
 def __init__(self, root):
 self.initialize()
 
 def initialize(self):
 self.root = root
        width = 1500
        height = 750
 self.root.geometry(f"{width}x{height}")
 self.root.title("TKINTER AND DATA SCIENCE")
 
 #Creates necessary objects



 self.obj_window = Design_Window()
 self.obj_data = Process_Data()
 self.obj_plot = Helper_Plot()
 self.obj_ML = Machine_Learning()
 
 #Reads dataset
 self.df = self.obj_data.preprocess()
 
 #Categorize dataset
 self.df_dummy = self.obj_data.categorize(self.df)
 
 #Extracts input and output variables
 self.cat_cols, self.num_cols = self.obj_data.extract_cat_num_cols(self.df)
 self.df_final = self.obj_data.encode_categorical_feats(self.df, self.cat_cols)
 self.X, self.y = self.obj_data.extract_input_output_vars(self.df_final)
 
 #Places widgets in root
 self.obj_window.add_widgets(self.root)      
 
 #Binds event
 self.binds_event()
 
 #Initially turns off combo4 and combo5 before data splitting is done
 self.obj_window.combo4['state'] = 'disabled'
 self.obj_window.combo5['state'] = 'disabled'
 
 def binds_event(self):
 #Binds listbox to a function
 self.obj_window.listbox.bind("<<ListboxSelect>>",
self.choose_list_widget)
 
 # Binds combobox1 to a function
 self.obj_window.combo1.bind("<<ComboboxSelected>>",
self.choose_combobox1)
 
 # Binds combobox2 to a function



 self.obj_window.combo2.bind("<<ComboboxSelected>>",
self.choose_combobox2)
 
 #Binds button1 to shows_table() function
 #Shows table if user clicks LOAD DATASET
 self.obj_window.button1.config(command =
lambda:self.obj_plot.shows_table(self.root, self.df, 1400, 600, "Dataset"))  
 #Binds button2 to train_ML() function
 self.obj_window.button2.config(command=self.train_ML)
 
 # Binds combobox4 to a function
 self.obj_window.combo4.bind("<<ComboboxSelected>>",
self.choose_combobox4)
 
 def choose_list_widget(self, event):
        chosen =
self.obj_window.listbox.get(self.obj_window.listbox.curselection())
 print(chosen)
 self.obj_plot.choose_plot(self.df, self.df_dummy, chosen,
 self.obj_window.figure1, self.obj_window.canvas1,
 self.obj_window.figure2, self.obj_window.canvas2)
 
 def choose_combobox1(self, event):
        chosen = self.obj_window.combo1.get()
 self.obj_plot.choose_category(self.df_dummy, chosen,
 self.obj_window.figure1, self.obj_window.canvas1,
 self.obj_window.figure2, self.obj_window.canvas2)
 
 def choose_combobox2(self, event):
        chosen = self.obj_window.combo2.get()
 self.obj_plot.choose_plot_more(self.df_final, chosen,
 self.X, self.y,
 self.obj_window.figure1,
 self.obj_window.canvas1, self.obj_window.figure2,
 self.obj_window.canvas2)
 



 def train_ML(self):
        file_path = os.getcwd()+"/X_train.pkl"
 if os.path.exists(file_path):
 self.X_train, self.X_test, self.y_train, self.y_test = self.obj_ML.load_files()
 else:
 self.obj_ML.oversampling_splitting(self.X, self.y)
 self.X_train, self.X_test, self.y_train, self.y_test = self.obj_ML.load_files()
 
 print("Loading files done...")
 
 #turns on combo4 and combo5 after splitting is done
 self.obj_window.combo4['state'] = 'normal'
 self.obj_window.combo5['state'] = 'normal'
 
 self.obj_window.button2.config(state="disabled")
 
 def choose_combobox4(self, event):
        chosen = self.obj_window.combo4.get()
 self.obj_plot.choose_plot_ML(self.root, chosen, self.X_train, self.X_test,
 self.y_train, self.y_test, self.obj_window.figure1,
 self.obj_window.canvas1, self.obj_window.figure2,
 self.obj_window.canvas2)         
 
if __name__ == "__main__":
    root = tk.Tk()
    app = Main_Class(root)
    root.mainloop()
 
#design_window.py
import tkinter as tk
from tkinter import ttk
from matplotlib.figure import Figure
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
 
class Design_Window:
 def add_widgets(self, root):



 #Adds button(s)
 self.add_buttons(root)
 
 #Adds canvasses
 self.add_canvas(root)
 
 #Adds labels
 self.add_labels(root)
 
 #Adds listbox widget
 self.add_listboxes(root)
 
 #Adds combobox widget
 self.add_comboboxes(root)
 
 def add_buttons(self, root):
 #Adds button
 self.button1 = tk.Button(root, height=2, width=30, text="LOAD
DATASET")
 self.button1.grid(row=0, column=0, padx=5, pady=5, sticky="w")
 
 self.button2 = tk.Button(root, height=2, width=30, text="SPLIT DATA")
 self.button2.grid(row=9, column=0, padx=5, pady=5, sticky="w")
 
 def add_labels(self, root):
 #Adds labels
 self.label1 = tk.Label(root, text = "CHOOSE PLOT", fg = "red")
 self.label1.grid(row=1, column=0, padx=5, pady=1, sticky="w")
 
 self.label2 = tk.Label(root, text = "CHOOSE CATEGORIZED PLOT", fg
= "blue")
 self.label2.grid(row=3, column=0, padx=5, pady=1, sticky="w")
 
 self.label2 = tk.Label(root, text = "CHOOSE FEATURES", fg = "black")
 self.label2.grid(row=5, column=0, padx=5, pady=1, sticky="w")
 



 self.label3 = tk.Label(root, text = "CHOOSE REGRESSORS", fg =
"green")
 self.label3.grid(row=7, column=0, padx=5, pady=1, sticky="w")
 
 self.label4 = tk.Label(root, text = "CHOOSE MACHINE LEARNING", fg
= "blue")
 self.label4.grid(row=10, column=0, padx=5, pady=1, sticky="w")
 
 self.label5 = tk.Label(root, text = "CHOOSE DEEP LEARNING", fg =
"red")
 self.label5.grid(row=12, column=0, padx=5, pady=1, sticky="w")
 
 def add_canvas(self, root):
 #Menambahkan canvas1 widget pada root untuk menampilkan hasil
 self.figure1 = Figure(figsize=(6.2, 7), dpi=100)
 self.figure1.patch.set_facecolor("lightgray")
 self.canvas1 = FigureCanvasTkAgg(self.figure1, master=root)
 self.canvas1.get_tk_widget().grid(row=0, column=1, columnspan=1,
rowspan=25, padx=5, pady=5, sticky="n")
 
 #Menambahkan canvas2 widget pada root untuk menampilkan hasil
 self.figure2 = Figure(figsize=(6.2, 7), dpi=100)
 self.figure2.patch.set_facecolor("lightgray")
 self.canvas2 = FigureCanvasTkAgg(self.figure2, master=root)
 self.canvas2.get_tk_widget().grid(row=0, column=2, columnspan=1,
rowspan=25, padx=5, pady=5, sticky="n")
 
 def add_listboxes(self, root):
 #Menambahkan list widget
 self.listbox = tk.Listbox(root, selectmode=tk.SINGLE, width=35)
 self.listbox.grid(row=2, column=0, sticky='n', padx=5, pady=1)
 
 # Menyisipkan item ke dalam list widget
        items = ["Marital Status", "Education", "Country",
 "Age Group", "Education with Response 0", "Education with Response 1",
 "Country with Response 0", "Country with Response 1",



 "Customer Age", "Income", "Mount of Wines",
 "Education versus Response", "Age Group versus Response",
 "Marital Status versus Response", "Country versus Response",
 "Number of Dependants versus Response",
 "Country versus Customer Age Per Education",
 "Num_TotalPurchases versus Education Per Marital Status"]
 for item in items:
 self.listbox.insert(tk.END, item)
 
 self.listbox.config(height=len(items))
 
 def add_comboboxes(self, root):
 # Create ComboBoxes
 self.combo1 = ttk.Combobox(root, width=32)
 self.combo1["values"] = ["Categorized Income versus Response",
 "Categorized Total Purchase versus Categorized Income",
 "Categorized Recency versus Categorized Total Purchase",
 "Categorized Customer Month versus Categorized Customer Age",
 "Categorized Mount of Gold Products versus Categorized Income",
 "Categorized Mount of Fish Products versus Categorized Total
AmountSpent",
 "Categorized Mount of Meat Products versus Categorized Recency",
 "Distribution of Numerical Columns"]
 self.combo1.grid(row=4, column=0, padx=5, pady=1, sticky="n")
 
 self.combo2 = ttk.Combobox(root, width=32)
 self.combo2["values"] = ["Correlation Matrix", "RF Features Importance",
 "ET Features Importance", "RFE Features Importance"]
 self.combo2.grid(row=6, column=0, padx=5, pady=1, sticky="n")
 
 self.combo3 = ttk.Combobox(root, width=32)
 self.combo3["values"] = ["Linear Regression", "RF Regression",
 "Decision Trees Regression", "KNN Regression",
 "AdaBoost Regression", "Gradient Boosting Regression",
 "XGB Regression", "LGB Regression", "CatBoost Regression",
 "SVR Regression", "Lasso Regression", "Ridge Regression"]



 self.combo3.grid(row=8, column=0, padx=5, pady=1, sticky="n")
 
 self.combo4 = ttk.Combobox(root, width=32)
 self.combo4["values"] = ["Logistic Regression", "Random Forest",
 "Decision Trees", "K-Nearest Neighbors",
 "AdaBoost", "Gradient Boosting",
 "Extreme Gradient Boosting", "Light Gradient Boosting",
 "Multi-Layer Perceptron", "Support Vector Classifier"]
 self.combo4.grid(row=11, column=0, padx=5, pady=1, sticky="n")
 
 self.combo5 = ttk.Combobox(root, width=32)
 self.combo5["values"] = ["LSTM", "Convolutional NN", "Recurrent NN",
"Feed-Forward NN", "Artifical NN"]
 self.combo5.grid(row=13, column=0, padx=5, pady=1, sticky="n")
 
#helper_plot.py
from tkinter import *
import seaborn as sns
import numpy as np
from pandastable import Table
from process_data import Process_Data
from machine_learning import Machine_Learning
from sklearn.metrics import confusion_matrix, roc_curve,
accuracy_score
from sklearn.model_selection import learning_curve
 
class Helper_Plot:
 def __init__(self):
 self.obj_data = Process_Data()
 self.obj_ml = Machine_Learning()
 # self.obj_dl = Deep_Learning()
 
 def shows_table(self, root, df, width, height, title):
       frame = Toplevel(root) #new window
 self.table = Table(frame, dataframe=df, showtoolbar=True,
showstatusbar=True)



 
 # Sets dimension of Toplevel
       frame.geometry(f"{width}x{height}")
       frame.title(title)
 self.table.show()
 
 # Defines function to create pie chart and bar plot as subplots   
 def plot_piechart(self, df, var, figure, canvas, title=''):
        figure.clear()
 
 # Pie Chart (Subplot kiri)
        plot1 = figure.add_subplot(2,1,1)        
        label_list = list(df[var].value_counts().index)
        colors = sns.color_palette("deep", len(label_list))  
        _, _, autopcts = plot1.pie(df[var].value_counts(), autopct="%1.1f%%",
colors=colors,
            startangle=30, labels=label_list,
            wedgeprops={"linewidth": 2, "edgecolor": "white"},  # Add white
edge
            shadow=True, textprops={'fontsize': 7})
        plot1.set_title("Distribution of " + var + " variable " + title,
fontsize=10)
 
 # Bar Plot (Subplot Kanan)
        plot2 = figure.add_subplot(2,1,2)
        ax = df[var].value_counts().plot(kind="barh", color=colors, alpha=0.8,
ax = plot2)
 for i, j in enumerate(df[var].value_counts().values):
            ax.text(.7, i, j, weight="bold", fontsize=7)
 
        plot2.set_title("Count of " + var + " cases " + title, fontsize=10)
 
        figure.tight_layout()
        canvas.draw()
 
 def another_versus_response(self, df, feat, num_bins, figure, canvas):



        figure.clear()
        plot1 = figure.add_subplot(2,1,1)
 
        colors = sns.color_palette("Set2")
        df[df['Response'] == 0][feat].plot(ax=plot1, kind='hist',
bins=num_bins, edgecolor='black', color=colors[0])
        plot1.set_title('Not Responsive', fontsize=15)
        plot1.set_xlabel(feat, fontsize=10)
        plot1.set_ylabel('Count', fontsize=10)
        data1 = []
 for p in plot1.patches:
            x = p.get_x() + p.get_width() / 2.
            y = p.get_height()
            plot1.annotate(format(y, '.0f'), (x, y), ha='center',
                     va='center', xytext=(0, 10),
                     weight="bold", fontsize=7, textcoords='offset points')
            data1.append([x, y])
 
        plot2 = figure.add_subplot(2,1,2)
        df[df['Response'] == 1][feat].plot(ax=plot2, kind='hist',
bins=num_bins, edgecolor='black', color=colors[1])
        plot2.set_title('Responsive', fontsize=15)
        plot2.set_xlabel(feat, fontsize=10)
        plot2.set_ylabel('Count', fontsize=10)
        data2 = []
 for p in plot2.patches:
            x = p.get_x() + p.get_width() / 2.
            y = p.get_height()
            plot2.annotate(format(y, '.0f'), (x, y), ha='center',
                     va='center', xytext=(0, 10),
                     weight="bold", fontsize=7, textcoords='offset points')
            data2.append([x, y])
 
        figure.tight_layout()
        canvas.draw()
 



 #Puts label inside stacked bar
 def put_label_stacked_bar(self, ax,fontsize):
 #patches is everything inside of the chart
 for rect in ax.patches:
 # Find where everything is located
            height = rect.get_height()
            width = rect.get_width()
            x = rect.get_x()
            y = rect.get_y()
 
 # The height of the bar is the data value and can be used as the label
            label_text = f'{height:.0f}' 
 
 # ax.text(x, y, text)
            label_x = x + width / 2
            label_y = y + height / 2
 
 # plots only when height is greater than specified value
 if height > 0:
                ax.text(label_x, label_y, label_text, \
                    ha='center', va='center', \
                    weight = "bold",fontsize=fontsize)
 
 #Plots one variable against another variable
 def dist_one_vs_another_plot(self, df, cat1, cat2, figure, canvas, title):
        figure.clear()
        plot1 = figure.add_subplot(1,1,1)
 
        group_by_stat = df.groupby([cat1, cat2]).size()
        colors = sns.color_palette("Set2", len(df[cat1].unique()))
        stacked_data = group_by_stat.unstack()
        group_by_stat.unstack().plot(kind='bar', stacked=True, ax=plot1,
grid=True, color=colors)
        plot1.set_title(title, fontsize=12)
        plot1.set_ylabel('Number of Cases', fontsize=10)
        plot1.set_xlabel(cat1, fontsize=10)



 self.put_label_stacked_bar(plot1,7)
 # Set font for tick labels
        plot1.tick_params(axis='both', which='major', labelsize=8)
        plot1.tick_params(axis='both', which='minor', labelsize=8)    
        plot1.legend(fontsize=8)    
        figure.tight_layout()
        canvas.draw()
 
 def box_plot(self, df, x, y, hue, figure, canvas, title):
        figure.clear()
        plot1 = figure.add_subplot(1,1,1)
 
 #Creates boxplot of Num_TotalPurchases versus Num_Dependants
        sns.boxplot(data = df, x = x, y = y, hue = hue, ax=plot1)
        plot1.set_title(title, fontsize=14)
        plot1.set_xlabel(x, fontsize=10)
        plot1.set_ylabel(y, fontsize=10)
        figure.tight_layout()
        canvas.draw()
 
 def choose_plot(self, df1, df2, chosen, figure1, canvas1, figure2, canvas2):
 print(chosen)
 if chosen == "Marital Status":
 self.plot_piechart(df2, "Marital_Status", figure1, canvas1)
 
 elif chosen == "Education":
 self.plot_piechart(df2, "Education", figure2, canvas2)
 
 elif chosen == "Country":
 self.plot_piechart(df2, "Country", figure1, canvas1)            
 
 elif chosen == "Age Group":
 self.plot_piechart(df2, "AgeGroup", figure2, canvas2)              
 
 elif chosen == "Age Group":
 self.plot_piechart(df2, "AgeGroup", figure2, canvas2)



 
 elif chosen == "Education with Response 0":
 self.plot_piechart(df2[df2.Response==0], "Education", figure1, canvas1, "
with Response 0")
 
 elif chosen == "Education with Response 1":
 self.plot_piechart(df2[df2.Response==1], "Education", figure2, canvas2, "
with Response 1")
 
 elif chosen == "Country with Response 0":
 self.plot_piechart(df2[df2.Response==0], "Country", figure1, canvas1, "
with Response 0")
 
 elif chosen == "Country with Response 1":
 self.plot_piechart(df2[df2.Response==1], "Country", figure2, canvas2, "
with Response 1")       
 
 elif chosen == "Income":
 self.another_versus_response(df1, "Income", 32, figure1, canvas1)
 
 elif chosen == "Mount of Wines":
 self.another_versus_response(df1, "MntWines", 32, figure2, canvas2)
 
 elif chosen == "Customer Age":
 self.another_versus_response(df1, "Customer_Age", 32, figure1, canvas1)
 
 elif chosen == "Education versus Response":
 self.dist_one_vs_another_plot(df2, "Education", "Response", figure2,
canvas2, chosen)
 
 elif chosen == "Age Group versus Response":
 self.dist_one_vs_another_plot(df2, "AgeGroup", "Response", figure1,
canvas1, chosen)
 
 elif chosen == "Marital Status versus Response":



 self.dist_one_vs_another_plot(df2, "Marital_Status", "Response", figure2, 
canvas2, chosen)            
 
 elif chosen == "Country versus Response":
 self.dist_one_vs_another_plot(df2, "Country", "Response", figure1, 
canvas1, chosen)              
 
 elif chosen == "Number of Dependants versus Response":
 self.dist_one_vs_another_plot(df2, "Num_Dependants", "Response",
figure2, canvas2, chosen)
 
 elif chosen == "Country versus Customer Age Per Education":
 self.box_plot(df1, "Country", "Customer_Age", "Education", figure1,
canvas1, chosen)
 



 elif chosen == "Num_TotalPurchases versus Education Per Marital Status":
 self.box_plot(df1, "Education", "Num_TotalPurchases", "Marital_Status",
figure2, canvas2, chosen)
 
 def choose_category(self, df, chosen, figure1, canvas1, figure2, canvas2):  
 if chosen == "Categorized Income versus Response":
 self.dist_one_vs_another_plot(df, "Income", "Response", figure1, canvas1, 
chosen)       
 
 if chosen == "Categorized Total Purchase versus Categorized Income":
 self.dist_one_vs_another_plot(df, "Num_TotalPurchases", "Income", 
figure2, canvas2, chosen)      
 
 if chosen == "Categorized Recency versus Categorized Total Purchase":
 self.dist_one_vs_another_plot(df, "Recency", "Num_TotalPurchases", 
figure1, canvas1, chosen)    
 
 if chosen == "Categorized Customer Month versus Categorized Customer
Age":
 self.dist_one_vs_another_plot(df, "Dt_Customer_Month",
"Customer_Age", figure2, canvas2, chosen)
 
 if chosen == "Categorized Mount of Gold Products versus Categorized
Income":
 self.dist_one_vs_another_plot(df, "MntGoldProds", "Income", figure1,
canvas1, chosen)
 
 if chosen == "Categorized Mount of Fish Products versus Categorized
Total AmountSpent":
 self.dist_one_vs_another_plot(df, "MntFishProducts",
"TotalAmount_Spent", figure2, canvas2, chosen)
 
 if chosen == "Categorized Mount of Meat Products versus Categorized
Recency":
 self.dist_one_vs_another_plot(df, "MntMeatProducts", "Recency", figure1,
canvas1, chosen)



 
 def plot_corr_mat(self, df, figure, canvas):
        figure.clear()    
        plot1 = figure.add_subplot(1,1,1)  
        categorical_columns = df.select_dtypes(include=['object',
'category']).columns
        df_removed = df.drop(columns=categorical_columns)
        corrdata = df_removed.corr()
 
        annot_kws = {"size": 5}
        sns.heatmap(corrdata, ax = plot1, lw=1, annot=True, cmap="Reds",
annot_kws=annot_kws)
        plot1.set_title('Correlation Matrix', fontweight ="bold",fontsize=14)
 
 # Set font for x and y labels
        plot1.set_xlabel('Features', fontweight="bold", fontsize=12)
        plot1.set_ylabel('Features', fontweight="bold", fontsize=12)
 
 # Set font for tick labels
        plot1.tick_params(axis='both', which='major', labelsize=5)
        plot1.tick_params(axis='both', which='minor', labelsize=5)
 
        figure.tight_layout()
        canvas.draw()
 
 def plot_rf_importance(self, X, y, figure, canvas):
        result_rf = self.obj_data.feat_importance_rf(X, y)
        figure.clear()    
        plot1 = figure.add_subplot(1,1,1)  
        sns.set_color_codes("pastel")
        ax=sns.barplot(x = 'Values',y = 'Features', data=result_rf,
color="Blue", ax=plot1)
        plot1.set_title('Random Forest Features Importance', fontweight
="bold",fontsize=14)
 
        plot1.set_xlabel('Features Importance',  fontsize=10)



        plot1.set_ylabel('Feature Labels',  fontsize=10)
 # Set font for tick labels
        plot1.tick_params(axis='both', which='major', labelsize=5)
        plot1.tick_params(axis='both', which='minor', labelsize=5)
        figure.tight_layout()
        canvas.draw()
 
 def plot_et_importance(self, X, y, figure, canvas):
        result_rf = self.obj_data.feat_importance_et(X, y)
        figure.clear()    
        plot1 = figure.add_subplot(1,1,1)  
        sns.set_color_codes("pastel")
        ax=sns.barplot(x = 'Values',y = 'Features', data=result_rf, color="Red",
ax=plot1)
        plot1.set_title('Extra Trees Features Importance', fontweight
="bold",fontsize=14)
 
        plot1.set_xlabel('Features Importance',  fontsize=10)
        plot1.set_ylabel('Feature Labels',  fontsize=10)
 # Set font for tick labels
        plot1.tick_params(axis='both', which='major', labelsize=5)
        plot1.tick_params(axis='both', which='minor', labelsize=5)
        figure.tight_layout()
        canvas.draw()        
 
 def plot_rfe_importance(self, X, y, figure, canvas):
        result_lg = self.obj_data.feat_importance_rfe(X, y)
        figure.clear()    
        plot1 = figure.add_subplot(1,1,1)  
        sns.set_color_codes("pastel")
        ax=sns.barplot(x = 'Ranking',y = 'Features', data=result_lg,
color="orange", ax=plot1)
        plot1.set_title('RFE Features Importance', fontweight
="bold",fontsize=14)
 
        plot1.set_xlabel('Features Importance',  fontsize=10)



        plot1.set_ylabel('Feature Labels',  fontsize=10)
 # Set font for tick labels
        plot1.tick_params(axis='both', which='major', labelsize=5)
        plot1.tick_params(axis='both', which='minor', labelsize=5)
        figure.tight_layout()
        canvas.draw()   
 
 def choose_plot_more(self, df, chosen, X, y, figure1, canvas1, figure2, 
canvas2):  
 if chosen == "Correlation Matrix":
 self.plot_corr_mat(df, figure1, canvas1)
 
 if chosen == "RF Features Importance":
 self.plot_rf_importance(X, y, figure2, canvas2)
 
 if chosen == "ET Features Importance":
 self.plot_et_importance(X, y, figure1, canvas1)
 
 if chosen == "RFE Features Importance":
 self.plot_rfe_importance(X, y, figure1, canvas1)
 
 def plot_cm_roc(self, model, X_test, y_test, ypred, name, figure, canvas):
        figure.clear()    
 
 #Plots confusion matrix
        plot1 = figure.add_subplot(2,1,1)  
        cm = confusion_matrix(y_test, ypred, )
        sns.heatmap(cm, annot=True, linewidth=3, linecolor='red', fmt='g',
cmap="Greens", annot_kws={"size": 14}, ax=plot1)
        plot1.set_title('Confusion Matrix' + " of " + name, fontsize=12)
        plot1.set_xlabel('Y predict', fontsize=10)
        plot1.set_ylabel('Y test', fontsize=10)
        plot1.xaxis.set_ticklabels(['Responsive', 'Not Responsive'],
fontsize=10)
        plot1.yaxis.set_ticklabels(['Responsive', 'Not Responsive'],
fontsize=10)



 
 #Plots ROC
        plot2 = figure.add_subplot(2,1,2)
        Y_pred_prob = model.predict_proba(X_test)
        Y_pred_prob = Y_pred_prob[:, 1]
 
        fpr, tpr, thresholds = roc_curve(y_test, Y_pred_prob)
        plot2.plot([0,1],[0,1], color='navy', linestyle='--', linewidth=3)
        plot2.plot(fpr,tpr, color='red', linewidth=3)
        plot2.set_xlabel('False Positive Rate', fontsize=10)
        plot2.set_ylabel('True Positive Rate', fontsize=10)
        plot2.set_title('ROC Curve of ' + name , fontsize=12)
        plot2.grid(True)
 
        figure.tight_layout()
        canvas.draw()   
 
 #Plots true values versus predicted values diagram and learning curve
 def plot_real_pred_val_learning_curve(self, model, X_train, y_train,
X_test, y_test, ypred, name, figure, canvas):
        figure.clear()    
 
 #Plots true values versus predicted values diagram
        plot1 = figure.add_subplot(2,1,1)  
        acc=accuracy_score(y_test, ypred)
        plot1.scatter(range(len(ypred)),ypred,color="blue",
lw=3,label="Predicted")
        plot1.scatter(range(len(y_test)),
            y_test,color="red",label="Actual")
        plot1.set_title("Predicted Values vs True Values of " + name,
fontsize=12)
        plot1.set_xlabel("Accuracy: " + str(round((acc*100),3)) + "%")
        plot1.legend()
        plot1.grid(True, alpha=0.75, lw=1, ls='-.')
 
 #Plots learning curve



        train_sizes=np.linspace(.1, 1.0, 5)
        train_sizes, train_scores, test_scores, fit_times, _ =
learning_curve(model,
            X_train, y_train, cv=None, n_jobs=None, train_sizes=train_sizes,
return_times=True)
        train_scores_mean = np.mean(train_scores, axis=1)
        train_scores_std = np.std(train_scores, axis=1)
        test_scores_mean = np.mean(test_scores, axis=1)
        test_scores_std = np.std(test_scores, axis=1)
 
        plot2 = figure.add_subplot(2,1,2)
        plot2.fill_between(train_sizes, train_scores_mean - train_scores_std,
            train_scores_mean + train_scores_std, alpha=0.1, color="r")
        plot2.fill_between(train_sizes, test_scores_mean - test_scores_std,
            test_scores_mean + test_scores_std, alpha=0.1, color="g")
        plot2.plot(train_sizes, train_scores_mean, 'o-',
            color="r", label="Training score")
        plot2.plot(train_sizes, test_scores_mean, 'o-',
            color="g", label="Cross-validation score")
        plot2.legend(loc="best")
        plot2.set_title("Learning curve of " + name, fontsize=12)
        plot2.set_xlabel("fit_times")
        plot2.set_ylabel("Score")
        plot2.grid(True, alpha=0.75, lw=1, ls='-.')
 
        figure.tight_layout()
        canvas.draw()  
 
 def choose_plot_ML(self, root, chosen, X_train, X_test, y_train, y_test, 
figure1, canvas1, figure2, canvas2):  
 if chosen == "Logistic Regression":
            best_model, y_pred = self.obj_ml.implement_LR(chosen, X_train,
X_test, y_train, y_test)
 
 #Plots confusion matrix and ROC



 self.plot_cm_roc(best_model, X_test, y_test, y_pred, chosen, figure1,
canvas1)
 
 #Plots true values versus predicted values diagram and learning curve
 self.plot_real_pred_val_learning_curve(best_model, X_train, y_train,
                X_test, y_test, y_pred, chosen, figure2, canvas2)
 
 #Shows table of result
            df_lr = self.obj_data.read_dataset("results_LR.csv")
 self.shows_table(root, df_lr, 450, 750, "Y_test and Y_pred of Logistic
Regression")
 
 if chosen == "Random Forest":
            best_model, y_pred = self.obj_ml.implement_RF(chosen, X_train,
X_test, y_train, y_test)
 
 #Plots confusion matrix and ROC
 self.plot_cm_roc(best_model, X_test, y_test, y_pred, chosen, figure1,
canvas1)
 
 #Plots true values versus predicted values diagram and learning curve
 self.plot_real_pred_val_learning_curve(best_model, X_train, y_train,
                X_test, y_test, y_pred, chosen, figure2, canvas2)
 
 #Shows table of result
            df_lr = self.obj_data.read_dataset("results_RF.csv")
 self.shows_table(root, df_lr, 450, 750, "Y_test and Y_pred of Random
Forest")   
 
 if chosen == "K-Nearest Neighbors":
            best_model, y_pred = self.obj_ml.implement_KNN(chosen,
X_train, X_test, y_train, y_test)
 
 #Plots confusion matrix and ROC
 self.plot_cm_roc(best_model, X_test, y_test, y_pred, chosen, figure1,
canvas1)



 
 #Plots true values versus predicted values diagram and learning curve
 self.plot_real_pred_val_learning_curve(best_model, X_train, y_train,
                X_test, y_test, y_pred, chosen, figure2, canvas2)
 
 #Shows table of result
            df_lr = self.obj_data.read_dataset("results_KNN.csv")
 self.shows_table(root, df_lr, 450, 750, "Y_test and Y_pred of KNN")            
 
 if chosen == "Decision Trees":
            best_model, y_pred = self.obj_ml.implement_DT(chosen, X_train,
X_test, y_train, y_test)
 
 #Plots confusion matrix and ROC
 self.plot_cm_roc(best_model, X_test, y_test, y_pred, chosen, figure1,
canvas1)
 
 #Plots true values versus predicted values diagram and learning curve
 self.plot_real_pred_val_learning_curve(best_model, X_train, y_train,
                X_test, y_test, y_pred, chosen, figure2, canvas2)
 
 #Shows table of result
            df_lr = self.obj_data.read_dataset("results_DT.csv")
 self.shows_table(root, df_lr, 450, 750, "Y_test and Y_pred of Decision
Trees")  
 
 if chosen == "Gradient Boosting":
            best_model, y_pred = self.obj_ml.implement_GB(chosen, X_train,
X_test, y_train, y_test)
 
 #Plots confusion matrix and ROC
 self.plot_cm_roc(best_model, X_test, y_test, y_pred, chosen, figure1,
canvas1)
 
 #Plots true values versus predicted values diagram and learning curve
 self.plot_real_pred_val_learning_curve(best_model, X_train, y_train,



                X_test, y_test, y_pred, chosen, figure2, canvas2)
 
 #Shows table of result
            df_lr = self.obj_data.read_dataset("results_GB.csv")
 self.shows_table(root, df_lr, 450, 750, "Y_test and Y_pred of Gradient
Boosting")
 
 if chosen == "Extreme Gradient Boosting":
            best_model, y_pred = self.obj_ml.implement_XGB(chosen, X_train,
X_test, y_train, y_test)
 
 #Plots confusion matrix and ROC
 self.plot_cm_roc(best_model, X_test, y_test, y_pred, chosen, figure1,
canvas1)
 
 #Plots true values versus predicted values diagram and learning curve
 self.plot_real_pred_val_learning_curve(best_model, X_train, y_train,
                X_test, y_test, y_pred, chosen, figure2, canvas2)
 
 #Shows table of result
            df_lr = self.obj_data.read_dataset("results_XGB.csv")
 self.shows_table(root, df_lr, 450, 750, "Y_test and Y_pred of Extreme
Gradient Boosting")
 
 if chosen == "Multi-Layer Perceptron":
            best_model, y_pred = self.obj_ml.implement_MLP(chosen, X_train,
X_test, y_train, y_test)
 
 #Plots confusion matrix and ROC
 self.plot_cm_roc(best_model, X_test, y_test, y_pred, chosen, figure1,
canvas1)
 
 #Plots true values versus predicted values diagram and learning curve
 self.plot_real_pred_val_learning_curve(best_model, X_train, y_train,
                X_test, y_test, y_pred, chosen, figure2, canvas2)
 



 #Shows table of result
            df_lr = self.obj_data.read_dataset("results_MLP.csv")
 self.shows_table(root, df_lr, 450, 750, "Y_test and Y_pred of Multi-Layer
Perceptron")
 
 if chosen == "Support Vector Classifier":
            best_model, y_pred = self.obj_ml.implement_SVC(chosen, X_train,
X_test, y_train, y_test)
 
 #Plots confusion matrix and ROC
 self.plot_cm_roc(best_model, X_test, y_test, y_pred, chosen, figure1,
canvas1)
 
 #Plots true values versus predicted values diagram and learning curve
 self.plot_real_pred_val_learning_curve(best_model, X_train, y_train,
                X_test, y_test, y_pred, chosen, figure2, canvas2)
 
 #Shows table of result
            df_lr = self.obj_data.read_dataset("results_SVC.csv")
 self.shows_table(root, df_lr, 450, 750, "Y_test and Y_pred of Support
Vector Classifier")
 
 if chosen == "AdaBoost":
            best_model, y_pred = self.obj_ml.implement_ADA(chosen,
X_train, X_test, y_train, y_test)
 
 #Plots confusion matrix and ROC
 self.plot_cm_roc(best_model, X_test, y_test, y_pred, chosen, figure1,
canvas1)
 
 #Plots true values versus predicted values diagram and learning curve
 self.plot_real_pred_val_learning_curve(best_model, X_train, y_train,
                X_test, y_test, y_pred, chosen, figure2, canvas2)
 
 #Shows table of result
            df_lr = self.obj_data.read_dataset("results_ADA.csv")



 self.shows_table(root, df_lr, 450, 750, "Y_test and Y_pred of AdaBoost
Classifier")
 
 
 def plot_accuracy(self, history, name, figure, canvas):
        acc = history['accuracy']
        val_acc = history['val_accuracy']
        epochs = range(1, len(acc) + 1)
 
 #Cleans and Creates figure
        figure.clear()    
        plot1 = figure.add_subplot(1,1,1)  
 
 # Plots training accuracy in red and validation accuracy in blue dashed line
        plot1.plot(epochs, acc, 'r', label='Training accuracy', lw=3)
        plot1.plot(epochs, val_acc, 'b--', label='Validation accuracy', lw=3)
 
 # Set plot title and legend
        plot1.set_title('Training and validation accuracy of ' + name,
fontsize=12)
        plot1.legend(fontsize=8)
 
 # Set x-axis label and tick label font size
        plot1.set_xlabel("Epoch", fontsize=10)
        plot1.tick_params(labelsize=8)
 
 # Set background color
        plot1.gca().set_facecolor('black')
 
        figure.tight_layout()
        canvas.draw()
 
 def plot_loss(self, history, name, figure, canvas):
        loss = history['loss']
        val_loss = history['val_loss']
        epochs = range(1, len(loss) + 1)



 
 #Cleans and Creates figure
        figure.clear()    
        plot1 = figure.add_subplot(1,1,1)
 
 # Plot training loss in red and validation loss in blue dashed line
        plot1.plot(epochs, loss, 'r', label='Training loss', lw=3)
        plot1.plot(epochs, val_loss, 'b--', label='Validation loss', lw=3)
 
 # Set plot title and legend
        plot1.set_title('Training and validation loss of ' + name, fontsize=12)
        plot1.legend(fontsize=8)
 
 # Set x-axis label and tick label font size
        plot1.set_xlabel("Epoch", fontsize=10)
        plot1.tick_params(labelsize=8)
 
 # Set background color
        plot1.gca().set_facecolor('lightgray')
 
        figure.tight_layout()
        canvas.draw()
 
#process_data.py
import os
import numpy as np
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestClassifier,
ExtraTreesClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.feature_selection import RFE
 
class Process_Data:
 def read_dataset(self, filename):
 #Reads dataset



        curr_path = os.getcwd()
        path = os.path.join(curr_path, filename)
        df = pd.read_csv(path)
 
 return df
 
 def preprocess(self):
        df = self.read_dataset("marketing_data.csv")
 
 #Drops ID column
        df = df.drop("ID", axis = 1)
 
 #Renames column name and corrects data type
        df.rename(columns={' Income ':'Income'},inplace=True)
        df["Dt_Customer"] = pd.to_datetime(df["Dt_Customer"],
format='%m/%d/%y')  
        df["Income"] = df["Income"].str.replace("$","").str.replace(",","")
        df["Income"] = df["Income"].astype(float)
 
 #Checks null values
 print(df.isnull().sum())
 print('Total number of null values: ', df.isnull().sum().sum())
 
 #Imputes Income column with median values
        df['Income'] = df['Income'].fillna(df['Income'].median())
 print(f'Number of Null values in "Income" after Imputation:
{df["Income"].isna().sum()}')
 
 #Transformasi Dt_Customer
        df['Dt_Customer'] = pd.to_datetime(df['Dt_Customer'])
 print(f'After Transformation:\n{df["Dt_Customer"].head()}')
        df['Customer_Age'] = df['Dt_Customer'].dt.year - df['Year_Birth']
 
 #Creates number of children/dependents in home by adding 'Kidhome' and
'Teenhome' features
 #Creates number of Total_Purchases by adding all the purchases features



 #Creates TotalAmount_Spent by adding all the Mnt* features
        df['Dt_Customer_Month'] = df['Dt_Customer'].dt.month
        df['Dt_Customer_Year'] = df['Dt_Customer'].dt.year
        df['Num_Dependants'] = df['Kidhome'] + df['Teenhome']    
 
        purchase_features = [c for c in df.columns if 'Purchase' in str(c)]
 #Removes 'NumDealsPurchases' from the list above
        purchase_features.remove('NumDealsPurchases')
        df['Num_TotalPurchases'] = df[purchase_features].sum(axis = 1)
 
        amt_spent_features = [c for c in df.columns if 'Mnt' in str(c)]
        df['TotalAmount_Spent'] = df[amt_spent_features].sum(axis = 1)  
 
 #Creates a categorical feature using the customer's age by binnning them,
 #to help understanding purchasing behaviour
 print(f'Min. Customer Age: {df["Customer_Age"].min()}')
 print(f'Max. Customer Age: {df["Customer_Age"].max()}')
        df['AgeGroup'] = pd.cut(df['Customer_Age'], bins = [6, 24, 29, 40, 56,
75],
             labels = ['Gen-Z', 'Gen-Y.1', 'Gen-Y.2', 'Gen-X', 'BBoomers'])
 
 return df  
 
 def categorize(self, df):
 #Creates a dummy dataframe for visualization
        df_dummy=df.copy()
 
 #Categorizes Income feature
        labels = ['0-20k', '20k-30k', '30k-50k','50k-70k','70k-700k']
        df_dummy['Income'] = pd.cut(df_dummy['Income'],
            [0, 20000, 30000, 50000, 70000, 700000], labels=labels)        
 
 #Categorizes TotalAmount_Spent feature
        labels = ['0-200', '200-500', '500-800','800-1000','1000-3000']
        df_dummy['TotalAmount_Spent'] =
pd.cut(df_dummy['TotalAmount_Spent'],



            [0, 200, 500, 800, 1000, 3000], labels=labels)
 
 #Categorizes Num_TotalPurchases feature
        labels = ['0-5', '5-10', '10-15','15-25','25-35']
        df_dummy['Num_TotalPurchases'] =
pd.cut(df_dummy['Num_TotalPurchases'],
            [0, 5, 10, 15, 25, 35], labels=labels)
 
 #Categorizes Dt_Customer_Year feature
        labels = ['2012', '2013', '2014']
        df_dummy['Dt_Customer_Year'] =
pd.cut(df_dummy['Dt_Customer_Year'],
            [0, 2012, 2013, 2014], labels=labels)
 
 #Categorizes Dt_Customer_Month feature
        labels = ['0-3', '3-6', '6-9','9-12']
        df_dummy['Dt_Customer_Month'] =
pd.cut(df_dummy['Dt_Customer_Month'],
            [0, 3, 6, 9, 12], labels=labels)
 
 #Categorizes Customer_Age feature
        labels = ['0-30', '30-40', '40-50', '40-60','60-120']
        df_dummy['Customer_Age'] = pd.cut(df_dummy['Customer_Age'],
            [0, 30, 40, 50, 60, 120], labels=labels)
 
 #Categorizes MntGoldProds feature
        labels = ['0-30', '30-50', '50-80', '80-100','100-400']
        df_dummy['MntGoldProds'] = pd.cut(df_dummy['MntGoldProds'],
            [0, 30, 50, 80, 100, 400], labels=labels)
 
 #Categorizes MntSweetProducts feature
        labels = ['0-10', '10-20', '20-40', '40-100','100-300']
        df_dummy['MntSweetProducts'] =
pd.cut(df_dummy['MntSweetProducts'],
            [0, 10, 20, 40, 100, 300], labels=labels)
 



 #Categorizes MntFishProducts feature
        labels = ['0-10', '10-20', '20-40', '40-100','100-300']
        df_dummy['MntFishProducts'] =
pd.cut(df_dummy['MntFishProducts'],
            [0, 10, 20, 40, 100, 300], labels=labels)
 
 #Categorizes MntMeatProducts feature
        labels = ['0-50', '50-100', '100-200', '200-500','500-2000']
        df_dummy['MntMeatProducts'] =
pd.cut(df_dummy['MntMeatProducts'],
            [0, 50, 100, 200, 500, 2000], labels=labels)
 
 #Categorizes MntFruits feature
        labels = ['0-10', '10-30', '30-50', '50-100','100-200']
        df_dummy['MntFruits'] = pd.cut(df_dummy['MntFruits'],
            [0, 1, 30, 50, 100, 200], labels=labels)
 
 #Categorizes MntWines feature
        labels = ['0-100', '100-300', '300-500', '500-1000','1000-1500']
        df_dummy['MntWines'] = pd.cut(df_dummy['MntWines'],
            [0, 100, 300, 500, 1000, 1500], labels=labels)
 
 #Categorizes Recency feature
        labels = ['0-10', '10-30', '30-50', '50-80','80-100']
        df_dummy['Recency'] = pd.cut(df_dummy['Recency'],
            [0, 10, 30, 50, 80, 100], labels=labels)
 
 return df_dummy
 
 def extract_cat_num_cols(self, df):
 #Extracts categorical and numerical columns in dummy dataset
        cat_cols = [col for col in df.columns if
            (df[col].dtype == 'object') or (df[col].dtype.name == 'category')]
        num_cols = [col for col in df.columns if
            (df[col].dtype != 'object') and (df[col].dtype.name != 'category')]
 



 return cat_cols, num_cols
 
 def encode_categorical_feats(self, df, cat_cols):
 #Encodes categorical features in original dataset     
 print(f'Features that needs to be Label Encoded: \n{cat_cols}')
 
 for c in cat_cols:
            lbl = LabelEncoder()
            lbl.fit(list(df[c].astype(str).values))
            df[c] = lbl.transform(list(df[c].astype(str).values))
 print('Label Encoding done..')  
 return df  
 
 def extract_input_output_vars(self, df):
 #Extracts output and input variables
        y = df['Response'].values # Target for the model
        X = df.drop(['Dt_Customer', 'Year_Birth', 'Response'], axis = 1)  
 
 return X, y     
 
 def feat_importance_rf(self, X, y):
        names = X.columns
        rf = RandomForestClassifier()
        rf.fit(X, y)
 
        result_rf = pd.DataFrame()
        result_rf['Features'] = X.columns
        result_rf ['Values'] = rf.feature_importances_
        result_rf.sort_values('Values', inplace = True, ascending = False)
 
 return result_rf
 
 def feat_importance_et(self, X, y):
        model = ExtraTreesClassifier()
        model.fit(X, y)
 



        result_et = pd.DataFrame()
        result_et['Features'] = X.columns
        result_et ['Values'] = model.feature_importances_
        result_et.sort_values('Values', inplace=True, ascending =False)
 
 return result_et    
 
 def feat_importance_rfe(self, X, y):
        model = LogisticRegression()
 #Creates the RFE model
        rfe = RFE(model)
        rfe = rfe.fit(X, y)
 
        result_lg = pd.DataFrame()
        result_lg['Features'] = X.columns
        result_lg ['Ranking'] = rfe.ranking_
        result_lg.sort_values('Ranking', inplace=True , ascending = False)
 
 return result_lg   
 
 def save_result(self, y_test, y_pred, fname):
 # Convert y_test and y_pred to pandas Series for easier handling
        y_test_series = pd.Series(y_test)
        y_pred_series = pd.Series(y_pred)
 
 # Calculate y_result_series
        y_result_series = pd.Series(y_pred - y_test == 0)
        y_result_series = y_result_series.map({True: 'True', False: 'False'})
 
 # Create a DataFrame to hold y_test, y_pred, and y_result
        data = pd.DataFrame({'y_test': y_test_series, 'y_pred': y_pred_series,
'result': y_result_series})
 
 # Save the DataFrame to a CSV file
        data.to_csv(fname, index=False)
 



 
#machine_learning.py
import numpy as np
from imblearn.over_sampling import SMOTE
from sklearn.model_selection import train_test_split,
RandomizedSearchCV, GridSearchCV, StratifiedKFold
from sklearn.preprocessing import StandardScaler
import joblib
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, accuracy_score,
recall_score, precision_score
from sklearn.metrics import classification_report, f1_score,
plot_confusion_matrix
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import AdaBoostClassifier,
GradientBoostingClassifier
from xgboost import XGBClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.svm import SVC
import os
import joblib
import pandas as pd
from process_data import Process_Data
 
class Machine_Learning:
 def __init__(self):
 self.obj_data = Process_Data()
 
 def oversampling_splitting(self, X, y):
        sm = SMOTE(random_state=42)
        X,y = sm.fit_resample(X, y.ravel())
 
 #Splits the data into training and testing



        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2,
random_state = 2021, stratify=y)   
 
 #Use Standard Scaler
        scaler = StandardScaler()
        X_train_stand = scaler.fit_transform(X_train)
        X_test_stand = scaler.transform(X_test)    
 
 #Saves into pkl files
        joblib.dump(X_train_stand, 'X_train.pkl')
        joblib.dump(X_test_stand, 'X_test.pkl')
        joblib.dump(y_train, 'y_train.pkl')
        joblib.dump(y_test, 'y_test.pkl')  
 
 def load_files(self):
        X_train = joblib.load('X_train.pkl')
        X_test = joblib.load('X_test.pkl')
        y_train = joblib.load('y_train.pkl')
        y_test = joblib.load('y_test.pkl')
 
 return X_train, X_test, y_train, y_test
 
 def choose_feats_boundary(self, X, y):
        file_path = os.getcwd()
        X_train_feat_path = os.path.join(file_path, 'X_train_feat.pkl')
        X_test_feat_path = os.path.join(file_path, 'X_test_feat.pkl')
        y_train_feat_path = os.path.join(file_path, 'y_train_feat.pkl')
        y_test_feat_path = os.path.join(file_path, 'y_test_feat.pkl')
 
 if os.path.exists(X_train_feat_path):
            X_train_feat = joblib.load(X_train_feat_path)
            X_test_feat = joblib.load(X_test_feat_path)
            y_train_feat = joblib.load(y_train_feat_path)
            y_test_feat = joblib.load(y_test_feat_path)
 else:



 # Make sure feat_boundary contains valid column indices from your X
array
            feat_boundary = [1, 2]  # actual indices
 if all(idx < X.shape[1] for idx in feat_boundary):
                X_feature = X[:, feat_boundary]
                X_train_feat, X_test_feat, y_train_feat, y_test_feat =
train_test_split(X_feature, y,
                    test_size=0.2, random_state=2021, stratify=y)  
 
 # Saves into pkl files
                joblib.dump(X_train_feat, X_train_feat_path)
                joblib.dump(X_test_feat, X_test_feat_path)
                joblib.dump(y_train_feat, y_train_feat_path)
                joblib.dump(y_test_feat, y_test_feat_path)
 else:
 raise ValueError("Indices in feat_boundary exceed the number of
columns in X array")
 
 return X_train_feat, X_test_feat, y_train_feat, y_test_feat
 
 def train_model(self, model, X, y):
        model.fit(X, y)
 return model
 
 def predict_model(self, model, X, proba=False):
 if ~proba:
            y_pred = model.predict(X)
 else:
            y_pred_proba = model.predict_proba(X)
            y_pred = np.argmax(y_pred_proba, axis=1)
 
 return y_pred
 
 def run_model(self, name, model, X_train, X_test, y_train, y_test,
proba=False):   
        y_pred = self.predict_model(model, X_test, proba)



 
        accuracy = accuracy_score(y_test, y_pred)
        recall = recall_score(y_test, y_pred, average='weighted')
        precision = precision_score(y_test, y_pred, average='weighted')
        f1 = f1_score(y_test, y_pred, average='weighted')
 
 print(name)
 print('accuracy: ', accuracy)
 print('recall: ', recall)
 print('precision: ', precision)
 print('f1: ', f1)
 print(classification_report(y_test, y_pred))
 
 return y_pred
 
 def logistic_regression(self, name, X_train, X_test, y_train, y_test):
 #Logistic Regression Classifier
 # Define the parameter grid for the grid search
        param_grid = {
 'C': [0.01, 0.1, 1, 10],
 'penalty': ['none', 'l2'],
 'solver': ['newton-cg', 'lbfgs', 'liblinear', 'saga'],
        }
 
 # Initialize the Logistic Regression model
        logreg = LogisticRegression(max_iter=5000, random_state=2021)
 
 # Create GridSearchCV with the Logistic Regression model and the
parameter grid
        grid_search = GridSearchCV(logreg, param_grid, cv=3,
scoring='accuracy', n_jobs=-1)
 
 # Train and perform grid search
        grid_search.fit(X_train, y_train)
 
 # Get the best Logistic Regression model from the grid search



        best_model = grid_search.best_estimator_
 
 #Saves model
        joblib.dump(best_model, 'LR_Model.pkl')    
 
 # Print the best hyperparameters found
 print(f"Best Hyperparameters for LR:")
 print(grid_search.best_params_)        
 
 return best_model
 
 def implement_LR(self, chosen, X_train, X_test, y_train, y_test):
        file_path = os.getcwd()+"/LR_Model.pkl"
 if os.path.exists(file_path):
            model = joblib.load('LR_Model.pkl')
            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)
 else:
            model = self.logistic_regression(chosen, X_train, X_test, y_train,
y_test)
            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)
 
 #Saves result into excel file
 self.obj_data.save_result(y_test, y_pred, "results_LR.csv")
 
 print("Training Logistic Regression done...")
 return model, y_pred
 
 def random_forest(self, name, X_train, X_test, y_train, y_test):
 #Random Forest Classifier    
 # Define the parameter grid for the grid search
        param_grid = {
 'n_estimators': [100, 200, 300],
 'max_depth': [10, 20, 30, 40, 50],
 'min_samples_split': [2, 5, 10],



 'min_samples_leaf': [1, 2, 4]
        }
 
 # Initialize the RandomForestClassifier model
        rf = RandomForestClassifier(random_state=2021)
 
 # Create GridSearchCV with the RandomForestClassifier model and the
parameter grid
        grid_search = GridSearchCV(rf, param_grid, cv=3, scoring='accuracy',
n_jobs=-1)
 
 # Train and perform grid search
        grid_search.fit(X_train, y_train)
 
 # Get the best RandomForestClassifier model from the grid search
        best_model = grid_search.best_estimator_
 
 #Saves model
        joblib.dump(best_model, 'RF_Model.pkl')    
 
 # Print the best hyperparameters found
 print(f"Best Hyperparameters for RF:")
 print(grid_search.best_params_)        
 
 return best_model
 
 def implement_RF(self, chosen, X_train, X_test, y_train, y_test):
        file_path = os.getcwd()+"/RF_Model.pkl"
 if os.path.exists(file_path):
            model = joblib.load('RF_Model.pkl')
            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)
 else:
            model = self.random_forest(chosen, X_train, X_test, y_train, y_test)
            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)



 
 #Saves result into excel file
 self.obj_data.save_result(y_test, y_pred, "results_RF.csv")
 
 print("Training Random Forest done...")
 return model, y_pred
 
 def knearest_neigbors(self, name, X_train, X_test, y_train, y_test):
 #KNN Classifier
 # Define the parameter grid for the grid search
        param_grid = {
 'n_neighbors': list(range(2, 10))
        }
 
 # Initialize the KNN Classifier
        knn = KNeighborsClassifier()
 
 # Create GridSearchCV with the KNN model and the parameter grid
        grid_search = GridSearchCV(knn, param_grid, cv=3,
scoring='accuracy', n_jobs=-1)
 
 # Train and perform grid search
        grid_search.fit(X_train, y_train)
 
 # Get the best KNN model from the grid search
        best_model = grid_search.best_estimator_
 
 #Saves model
        joblib.dump(best_model, 'KNN_Model.pkl')    
 
 # Print the best hyperparameters found
 print(f"Best Hyperparameters for KNN:")
 print(grid_search.best_params_)        
 
 return best_model
 



 def implement_KNN(self, chosen, X_train, X_test, y_train, y_test):
        file_path = os.getcwd()+"/KNN_Model.pkl"
 if os.path.exists(file_path):
            model = joblib.load('KNN_Model.pkl')
            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)
 else:
            model = self.knearest_neigbors(chosen, X_train, X_test, y_train,
y_test)
            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)
 
 #Saves result into excel file
 self.obj_data.save_result(y_test, y_pred, "results_KNN.csv")
 
 print("Training KNN done...")
 return model, y_pred
 
 def decision_trees(self, name, X_train, X_test, y_train, y_test):
 # Initialize the DecisionTreeClassifier model
        dt_clf = DecisionTreeClassifier(random_state=2021)
 
 # Define the parameter grid for the grid search
        param_grid = {
 'max_depth': np.arange(1, 51, 1),
 'criterion': ['gini', 'entropy'],
 'min_samples_split': [2, 5, 10],
 'min_samples_leaf': [1, 2, 4],
        }
 
 # Create GridSearchCV with the DecisionTreeClassifier model and the
parameter grid
        grid_search = GridSearchCV(dt_clf, param_grid, cv=3,
scoring='accuracy', n_jobs=-1)
 
 # Train and perform grid search



        grid_search.fit(X_train, y_train)
 
 # Get the best DecisionTreeClassifier model from the grid search
        best_model = grid_search.best_estimator_
 
 #Saves model
        joblib.dump(best_model, 'DT_Model.pkl')    
 
 # Print the best hyperparameters found
 print(f"Best Hyperparameters for DT:")
 print(grid_search.best_params_)        
 
 return best_model
 
 def implement_DT(self, chosen, X_train, X_test, y_train, y_test):
        file_path = os.getcwd()+"/DT_Model.pkl"
 if os.path.exists(file_path):
            model = joblib.load('DT_Model.pkl')
            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)
 else:
            model = self.decision_trees(chosen, X_train, X_test, y_train, y_test)
            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)
 
 #Saves result into excel file
 self.obj_data.save_result(y_test, y_pred, "results_DT.csv")
 
 print("Training Decision Trees done...")
 return model, y_pred
 
 def gradient_boosting(self, name, X_train, X_test, y_train, y_test):
 #Gradient Boosting Classifier      
 # Initialize the GradientBoostingClassifier model
        gbt = GradientBoostingClassifier(random_state=2021)
 



 # Define the parameter grid for the grid search
        param_grid = {
 'n_estimators': [100, 200, 300],
 'max_depth': [10, 20, 30],
 'subsample': [0.6, 0.8, 1.0],
 'max_features': [0.2, 0.4, 0.6, 0.8, 1.0],
        }
 
 # Create GridSearchCV with the GradientBoostingClassifier model and the
parameter grid
        grid_search = GridSearchCV(gbt, param_grid, cv=3,
scoring='accuracy', n_jobs=-1)
 
 # Train and perform grid search
        grid_search.fit(X_train, y_train)
 
 # Get the best GradientBoostingClassifier model from the grid search
        best_model = grid_search.best_estimator_
 
 #Saves model
        joblib.dump(best_model, 'GB_Model.pkl')    
 
 # Print the best hyperparameters found
 print(f"Best Hyperparameters for GB:")
 print(grid_search.best_params_)        
 
 return best_model
 
 def implement_GB(self, chosen, X_train, X_test, y_train, y_test):
        file_path = os.getcwd()+"/GB_Model.pkl"
 if os.path.exists(file_path):
            model = joblib.load('GB_Model.pkl')
            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)
 else:



            model = self.gradient_boosting(chosen, X_train, X_test, y_train,
y_test)
            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)
 
 #Saves result into excel file
 self.obj_data.save_result(y_test, y_pred, "results_GB.csv")
 
 print("Training Gradient Boosting done...")
 return model, y_pred
 
 # def light_gradient_boosting(self, name, X_train, X_test, y_train, y_test):
 #     #LGBM Classifier
 #     # Define the parameter grid for grid search
 #     param_grid = {
 #         'max_depth': [10, 20, 30],
 #         'n_estimators': [100, 200, 300],
 #         'subsample': [0.6, 0.8, 1.0],
 #         'random_state': [2021]
 #     }
 
 #     # Initialize the LightGBM classifier
 #     lgbm = LGBMClassifier()
 
 #     # Create GridSearchCV with the LightGBM classifier and the 
parameter grid
 #     grid_search = GridSearchCV(lgbm, param_grid, cv=3, 
scoring='accuracy', n_jobs=-1)
 
 #     # Train and perform grid search
 #     grid_search.fit(X_train, y_train)
 
 #     # Get the best LightGBM classifier model from the grid search
 #     best_model = grid_search.best_estimator_
 
 #     #Saves model



 #     joblib.dump(best_model, 'LGB_Model.pkl')    
 
 #     # Print the best hyperparameters found
 #     print(f"Best Hyperparameters for LGB:")
 #     print(grid_search.best_params_)        
 
 #     return best_model
 
 # def implement_LGB(self, chosen, X_train, X_test, y_train, y_test):
 #     file_path = os.getcwd()+"/LGB_Model.pkl"
 #     if os.path.exists(file_path):
 #         model = joblib.load('LGB_Model.pkl')
 #         y_pred = self.run_model(chosen, model, X_train, X_test, y_train, 
y_test, proba=True) 
 #     else:
 #         model = self.light_gradient_boosting(chosen, X_train, X_test, 
y_train, y_test)
 #         y_pred = self.run_model(chosen, model, X_train, X_test, y_train, 
y_test, proba=True)
 
 #     #Saves result into excel file
 #     self.save_result(y_test, y_pred, "results_LGB.csv")
 
 #     print("Training Light Gradient Boosting done...")
 #     return model, y_pred
 
 def extreme_gradient_boosting(self, name, X_train, X_test, y_train,
y_test):
 # Define the parameter grid for the grid search
        param_grid = {
 'n_estimators': [100, 200, 300],
 'max_depth': [10, 20, 30],
 'learning_rate': [0.01, 0.1, 0.2],
 'subsample': [0.6, 0.8, 1.0],
 'colsample_bytree': [0.6, 0.8, 1.0],
        }



 
 # Initialize the XGBoost classifier
        xgb = XGBClassifier(random_state=2021, use_label_encoder=False,
eval_metric='mlogloss')
 
 # Create GridSearchCV with the XGBoost classifier and the parameter grid
        grid_search = GridSearchCV(xgb, param_grid, cv=3,
scoring='accuracy', n_jobs=-1)
 
 # Train and perform grid search
        grid_search.fit(X_train, y_train)
 
 # Get the best XGBoost classifier model from the grid search
        best_model = grid_search.best_estimator_
 
 #Saves model
        joblib.dump(best_model, 'XGB_Model.pkl')    
 
 # Print the best hyperparameters found
 print(f"Best Hyperparameters for XGB:")
 print(grid_search.best_params_)        
 
 return best_model
 
 def implement_XGB(self, chosen, X_train, X_test, y_train, y_test):
        file_path = os.getcwd()+"/XGB_Model.pkl"
 if os.path.exists(file_path):
            model = joblib.load('XGB_Model.pkl')
            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)
 else:
            model = self.extreme_gradient_boosting(chosen, X_train, X_test,
y_train, y_test)
            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)
 



 #Saves result into excel file
 self.obj_data.save_result(y_test, y_pred, "results_XGB.csv")
 
 print("Training Extreme Gradient Boosting done...")
 return model, y_pred
 
 def multi_layer_perceptron(self, name, X_train, X_test, y_train, y_test):
 # Define the parameter grid for the grid search
        param_grid = {
 'hidden_layer_sizes': [(50,), (100,), (50, 50), (100, 50), (100, 100)],
 'activation': ['logistic', 'relu'],
 'solver': ['adam', 'sgd'],
 'alpha': [0.0001, 0.001, 0.01],
 'learning_rate': ['constant', 'invscaling', 'adaptive'],
        }
 
 # Initialize the MLP Classifier
        mlp = MLPClassifier(random_state=2021)
 
 # Create GridSearchCV with the MLP Classifier and the parameter grid
        grid_search = GridSearchCV(mlp, param_grid, cv=3,
scoring='accuracy', n_jobs=-1)
 
 # Train and perform grid search
        grid_search.fit(X_train, y_train)
 
 # Get the best MLP Classifier model from the grid search
        best_model = grid_search.best_estimator_
 
 #Saves model
        joblib.dump(best_model, 'MLP_Model.pkl')    
 
 # Print the best hyperparameters found
 print(f"Best Hyperparameters for MLP:")
 print(grid_search.best_params_)        
 



 return best_model
 
 def implement_MLP(self, chosen, X_train, X_test, y_train, y_test):
        file_path = os.getcwd()+"/MLP_Model.pkl"
 if os.path.exists(file_path):
            model = joblib.load('MLP_Model.pkl')
            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)
 else:
            model = self.multi_layer_perceptron(chosen, X_train, X_test,
y_train, y_test)
            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)
 
 #Saves result into excel file
 self.obj_data.save_result(y_test, y_pred, "results_MLP.csv")
 
 print("Training Multi-Layer Perceptron done...")
 return model, y_pred
 
 def support_vector(self, name, X_train, X_test, y_train, y_test):
 #Support Vector Classifier
 # Define the parameter grid for the grid search
        param_grid = {
 'C': [0.1, 1, 10],
 'kernel': ['linear', 'poly', 'rbf'],
 'gamma': ['scale', 'auto', 0.1, 1],
        }
 
 # Initialize the SVC model
        model_svc = SVC(random_state=2021, probability=True)
 
 # Create GridSearchCV with the SVC model and the parameter grid
        grid_search = GridSearchCV(model_svc, param_grid, cv=3,
scoring='accuracy', n_jobs=-1, refit=True)
 



 # Train and perform grid search
        grid_search.fit(X_train, y_train)
 
 # Get the best MLP Classifier model from the grid search
        best_model = grid_search.best_estimator_
 
 #Saves model
        joblib.dump(best_model, 'SVC_Model.pkl')    
 
 # Print the best hyperparameters found
 print(f"Best Hyperparameters for SVC:")
 print(grid_search.best_params_)        
 
 return best_model
 
 def implement_SVC(self, chosen, X_train, X_test, y_train, y_test):
        file_path = os.getcwd()+"/SVC_Model.pkl"
 if os.path.exists(file_path):
            model = joblib.load('SVC_Model.pkl')
            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)
 else:
            model = self.support_vector(chosen, X_train, X_test, y_train,
y_test)
            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)
 
 #Saves result into excel file
 self.obj_data.save_result(y_test, y_pred, "results_SVC.csv")
 
 print("Training Support Vector Classifier done...")
 return model, y_pred
 
 def adaboost_classifier(self, name, X_train, X_test, y_train, y_test):
 # Define the parameter grid for the grid search
        param_grid = {



 'n_estimators': [50, 100, 150],
 'learning_rate': [0.01, 0.1, 0.2],
        }
 
 # Initialize the AdaBoost classifier
        adaboost = AdaBoostClassifier(random_state=2021)
 
 # Create GridSearchCV with the AdaBoost classifier and the parameter
grid
        grid_search = GridSearchCV(adaboost, param_grid, cv=3,
scoring='accuracy', n_jobs=-1)
 
 
 # Train and perform grid search
        grid_search.fit(X_train, y_train)
 
 # Get the best AdaBoost Classifier model from the grid search
        best_model = grid_search.best_estimator_
 
 #Saves model
        joblib.dump(best_model, 'ADA_Model.pkl')    
 
 # Print the best hyperparameters found
 print(f"Best Hyperparameters for AdaBoost:")
 print(grid_search.best_params_)        
 
 return best_model
 
 def implement_ADA(self, chosen, X_train, X_test, y_train, y_test):
        file_path = os.getcwd()+"/ADA_Model.pkl"
 if os.path.exists(file_path):
            model = joblib.load('ADA_Model.pkl')
            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)
 else:



            model = self.adaboost_classifier(chosen, X_train, X_test, y_train,
y_test)
            y_pred = self.run_model(chosen, model, X_train, X_test, y_train,
y_test, proba=True)
 
 #Saves result into excel file
 self.obj_data.save_result(y_test, y_pred, "results_ADA.csv")
 
 print("Training AdaBoost done...")
 return model, y_pred
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